
Subject: Re: [Object IDL] routines that require user-supplied functions ...
Posted by Phillip & Suzanne[2] on Tue, 11 Aug 1998 07:00:00 GMT
View Forum Message <> Reply to Message

I've run across similar problems. In particular, XManager expects to have
functions/procedures for event handlers. The way I've been dealing with the
situation is to write a function/procedure that's defined in the same file as
my class, but uses the IDL notation for defining a class. So, in your case, I
would call the function test4__poly instead of test4::poly (replace the colons
with underscores). This naming convention establishes test4__poly as a
"friend" of the class for anyone reading the code, while still allowing it to
be accessed as a standard procedure/function. In IDL 5.1, RSI realized that
this was a problem, and added the Call_Method routine which allows an object's
method to be specified as a string. However, this won't work with canned routines.

You might be able to cobble together a way of invoking the object's poly
routine if you can obtain a reference to the object from within another
routine. If you can get an object reference, you could then do something like this:

function test4__poly, x
 ; Add some code to find the object being referred to
 ; I'm not sure how to accomplish this, but if you can
 ; obtain a reference to the object, this would work in
 ; a roundabout way.
 return, obj->poly, x
end

In either case, good luck.

Phillip David

dEdmundson@Bigfoot.com wrote:
>
> Here is a *demo* object-IDL code I wrote to illustrate a problem.
> This object integrates x^n over the interval (a,b) using the
> QROMB function. QROMB requires a user-defined function but I
> cannot manage to pass the 'poly' method.

Note that the requirement for QROMB is a user-defined FUNCTION, not METHOD.
While the two seem like they're interchangeable, they aren't. A function
doesn't have its own data, so it doesn't need an object reference. Methods
(can) use data internal to the object as well as arguments passed at the
command line. Therefore, they need not only to be invoked, but provided with
an object reference as well. The arrow notation for objects provides the
object in question.

> While this is a contrived example, one often wants to pass
> object method functions/procedures to other IDL routines. Is

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2697
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8136&goto=12528#msg_12528
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12528
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> there a generic way of passing object methods to such intrinsic
> routines?
>
> Cheers,
> Darran.
>
:> ;;-- ----------
:> ;; save the following as test4__define.pro somewhere in your IDL path
:> ;; uncomment one of the return statements in test4::integral
:> ;; invoke the object with t = obj_new('test4',3.0,0.0,1.0)
:>
:> function test4::init, degree, a, b
:> self.degree = degree
:> self.a = a
:> self.b = b
:> print, 'Integral = ', self->integral()
:> return, 0
:> end
:>
:> function test4::integral
:> ; try both of these ...
:> ; return, qromb('test4::poly', self.a, self.b)
:> ; return, qromb('self->poly', self.a, self.b)
:> end
:>
:> function test4::poly,x
:> return, x^(self.degree)
:> end
:>
:> pro test4__define
:> struct = {test4, degree:0.0, a:0.0, b:0.0}
:> end

Subject: Re: [Object IDL] routines that require user-supplied functions ...
Posted by davidf on Tue, 11 Aug 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Darran Edmundson (dEdmundson@Bigfoot.com) writes:

> Here is a *demo* object-IDL code I wrote to illustrate a problem.
> This object integrates x^n over the interval (a,b) using the
> QROMB function. QROMB requires a user-defined function but I
> cannot manage to pass the 'poly' method.
>
> While this is a contrived example, one often wants to pass
> object method functions/procedures to other IDL routines. Is
> there a generic way of passing object methods to such intrinsic

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8136&goto=12628#msg_12628
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12628
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> routines?

I don't believe there is a generic way of passing object
methods to intrinsic routines unless (perhaps) they are
written in such a way as to expect them. It is clear QROMB
has not been.

Nor have I found in the 15 minutes or so that I fooled around
with this a completely satisfactory "object-like" way to
solve this problem, although I did find a contrived solution
that uses a common block.

The idea is this: Put the self object in a common block
that can be declared in the POLY function. (It is a
restraint of the QROMB routine that POLY be defined with
one and only one parameter and that it be a vector of
values for which the function is solved.) This gets the
self object into the POLY function. BUT...not as a structure,
as an object reference.

This means that the equation to be solved can't look
like this, as it does in Darran's code:

 x^(self.degree)

because the data of an object is hidden and is accessible
only by its methods. So I had to write a Get_Degree method
for the object that returns the degree of the function.

My solution looks like this:

 function test4::init, degree, a, b
 common polycommon, xx
 ; ^^^^^^^^^^^^^^^^^^^
 self.degree = degree
 self.a = a
 self.b = b
 xx = self
 ; ^^^^^^^^^
 print, 'Integral = ', self->integral()
 return, 1
 end

 function test4::integral
 return, qromb('poly', self.a, self.b)
 end

 function test4::get_degree

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 return, self.degree
 end
 ;^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 function poly, x
 common polycommon, obj
 ;^^^^^^^^^^^^^^^^^^^^^
 return, x^(obj->get_degree())
 ; ^^^^^^^^^^^^^^^^^^^^^
 end

 pro test4__define
 struct = {test4, degree:0.0, a:0.0, b:0.0}
 end

This object can be created and called like this:

 t = obj_new('test4',3.0,0.0,1.0)

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting
E-Mail: davidf@dfanning.com
Phone: 970-221-0438, Toll Free Book Orders: 1-888-461-0155
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

