
Subject: Cumulative total
Posted by bowman on Thu, 17 Sep 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Can anyone suggest a more efficient way to compute the running cumulative
total of a 1-D array than using FOR loops? That is, a built-in function
or array operator to compute as follows:

n = 100L
f = FINDGEN(n) ;Just an example
f_cum = FLTARR(n)
f_cum[0L] = f[0L]
FOR i = 1L, n-1 DO f_cum[i] = f_cum[i-1L] + f[i]

Thanks, Ken Bowman

--
Dr. Kenneth P. Bowman, Professor 409-862-4060
Department of Meteorology 409-862-4466 fax
Texas A&M University bowmanATcsrp.tamu.edu
College Station, TX 77843-3150 Replace AT with @

Subject: Re: Cumulative total
Posted by davidf on Fri, 18 Sep 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Kenneth P. Bowman (bowman@null.tamu) writes:

> In article <3602B1F3.210@cdc.noaa.gov>, Andrew Loughe <afl@cdc.noaa.gov> wrote:
>
>> Nice, elegant solution, Eddie.
>
>>> here is the way i do it:
>>>
>>> IDL> A = findgen(10)
>>> IDL> N = n_elements(A)
>>> IDL> result = A # (lindgen(N,N) ge transpose(lindgen(N,N)))
>>> IDL> print,result
>>> 0.00000
>>> 1.00000
>>> 3.00000
>>> 6.00000
>>> 10.0000
>>> 15.0000
>>> 21.0000
>>> 28.0000
>>> 36.0000

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=80
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8328&goto=12870#msg_12870
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12870
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8328&goto=12977#msg_12977
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12977
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> 45.0000
>
> In my opinion this is a baroque construction that reveals a shortcoming in
> IDL.

Does "baroque" mean "impossible to understand"? :-(

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting
E-Mail: davidf@dfanning.com
Phone: 970-221-0438, Toll-Free Book Orders: 1-888-461-0155
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Cumulative total
Posted by Martin Schultz on Mon, 21 Sep 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Kenneth P. Bowman wrote:
>

> In my opinion this is a baroque construction that reveals a shortcoming in
> IDL. (Hey, not a major shortcoming. I'm not committing heresy here!)
[...]
>
> So, note to RSI: Add CUMULATIVE function to next release of IDL and make
> it a good IDL function so that one can specify which dimension of a
> possibly multidimensional array to accumulate over, etc. It should be
> quite useful with HISTOGRAM.
>
> Ken
>

Ken,

 you should really try RSINC's feedback (www.rsinc.com) for this.
Although it is said, the IDL developper folks sneak into this newsgroup
regularily, my (small) experience suggests that you have better chances
for requests of bug fixes or new functions when you contact them
directly (maybe it won't get into their database otherwise?).

Cheers,
Martin.

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8328&goto=12970#msg_12970
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12970
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

--
 -- -------
Dr. Martin Schultz
Department for Earth&Planetary Sciences, Harvard University
109 Pierce Hall, 29 Oxford St., Cambridge, MA-02138, USA

phone: (617)-496-8318
fax : (617)-495-4551

e-mail: mgs@io.harvard.edu
Internet-homepage: http://www-as.harvard.edu/people/staff/mgs/
 -- -------

Subject: Re: Cumulative total
Posted by Thomas A. McGlynn on Thu, 24 Sep 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Kenneth P. Bowman wrote:
>
> In article <3602B1F3.210@cdc.noaa.gov>, Andrew Loughe <afl@cdc.noaa.gov> wrote:
>
>> Nice, elegant solution, Eddie.
>
>>> here is the way i do it:
>>>
>>> IDL> A = findgen(10)
>>> IDL> N = n_elements(A)
>>> IDL> result = A # (lindgen(N,N) ge transpose(lindgen(N,N)))
...
> In my opinion this is a baroque construction that reveals a shortcoming in
> IDL. (Hey, not a major shortcoming. I'm not committing heresy here!)
>
> To compute the cumulative sum of a vector of length N, i.e.,
>
> x_cum[0] = x[0]
> FOR i = 1, N-1 DO x_cum[i] = x_cum[i-1] + x[i]
>
> should require N loads, N flops (adds), and N stores. This may not
> optimize well, since each result depends on the previous one, but I
> suspect most modern Fortran or C compilers would do pretty well.
>
> The IDL approach above requires creating an N^2 matrix filled with
> integers, performing an if test on every element of that array and its
> transpose, and then performing a matrix-vector multiply (N^2 multiplies
> and N^2 adds). What do you do when N = 100,000? It seem a silly way to

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1409
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8328&goto=12939#msg_12939
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12939
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> do a simple task.
>
> I'm not trying to pick on Eddie. It works for him. I wonder which method
> is faster?
>
...
> So, note to RSI: Add CUMULATIVE function to next release of IDL and make
> it a good IDL function so that one can specify which dimension of a
> possibly multidimensional array to accumulate over, etc. It should be
> quite useful with HISTOGRAM.
>
> Ken
>

Here's an idea for a more general solution. The problem arises
because when IDL evaluates a vector expression it acts as if all
elements of the expression are evaluated simulataneously. Suppose IDL
had a new equality operator which requires vector expressions to
be evaluated in subscript order.

E.g. currently,

 a(1:9) = a(0:8) + a(1:9)
translates to

 b = a
 a(1) = b(0) + b(1)
 a(2) = b(1) + b(2)
 ...

So we can't easily calculate a cumulative distribution.

Suppose we have a new equality operator, say :=, which says that each
vector expression will be evaluated in turn so

 a(1:9) := a(0:8) + a(1:9)

translates to
 a(1) = a(0) + a(1)
 a(2) = a(1) + a(2)
which gives us a cumulative distribution and solves the original
problem efficiently and elegantly. For a non-vector expression,
:= and = would be identical.

Another example of where this would be useful is an application where
you have the bin numbers for a number of events and you want to reconstruct
the histogram. E.g., suppose I have the measured x and y pixels for
a number of photons measured in some camera, and I'd like to construct

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

an image. There may be many photons that hit the same
pixel. Let the arrays x and y hold the pixel indices
Then

 image(*,*) = 0
 image(x,y) = image(x,y) + 1

would be a nice way to construct the image, but it doesn't work.
Regardless of how many photons were detected in a given pixel
the maximum value for image will be 1. This particular example
that I ran into -- and it hurt!

Using the := operator describe above we'd get the right answer.
I think there are a lot of applications where this would
be helpful and it probably would obviate the need for a lot
of special keyword in various functions.

There might be a penalty to pay in real vector machines for these
kinds of non-vectorizable loops, but most of us aren't
using IDL on Crays. My -- likely flawed -- understanding is that
the problem with explicit loops is that the interpreter is called for
each iteration. There would be no reason to do that for the := operator
so that they could be quite fast. Indeed, they might occasionally
be faster than the current loops since there would be no need for
the 'b = a' (or equivalent) statement that we had in the first example.

I'll likely be seeing Dave Stern in a few weeks. Is this
idea off the wall or a reasonable extension to ask for?

		Tom McGlynn
		tam@silk.gsfc.nasa.gov

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

