Subject: Object Tree
Posted by J.D. Smith on Mon, 16 Nov 1998 08:00:00 GMT

View Forum Message <> Reply to Message

I've made an Object-Based tree that might be useful... Basically, to use
it, derive a class from it, complete with node data, and possible data
collection, and/or modification methods. Each instance of this class is
a single node in a Tree, and contains two pointers: children and
siblings, specifying a list of this node's children (may have none), and
siblings (at least one... itself).

Things you can do with it:

*Add children and/or siblings to a given node.

*Delete a given node and all descendents.

*Delete an entire tree *except* a given node and descendents, replacing
the Tree.

*QObtain a list of a node's descendents.

*Obtain a list of all leafs (childless nodes) beneath a node.

*Visit all descendents or all descending leafs and call a specified
method on them (for data collection or modification). This is where the
real work is done.

All recursion is depth-first.

As an example of what can be done, | made a toy "TicTacToe" class which
populates the entire game tree for this simple game. | visit all

endgames (leafs), and collect win/loss statistics. This tree had around
350,000 nodes.

If you have data which is naturally organized heirarchically, this may
be useful for you.

JD

J.D. Smith [*I] WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

+

; NAME: ObjTree
; PURPOSE: A Object Based data Tree
; CATEGORY: Object-Based Data Manipulation

: METHODS:

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8655&goto=13485#msg_13485
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=13485
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; CHILDRENY(): Return this node's child object(s).
; SIBLING(): Return this node's sibling object(s)

; SETVALUE: Sets Object Data Values -- use ADD unless custom addition.
; KEYWORDS: Each keyword sets the corresponding member data with the
; passed value, which can either be an object list or pointer to one.

; CHILDREN: The node's children

; SIBLINGS: The node's siblings ... points also to parent's

; children list.

. LEAFS, list: return a list of all leafs below this node.
- FAMILY, list: return a list of all of this node's descendents.

; VISIT, method: Recursively call method method on all descendents,
; passing it any extra keywords (which might be required to effect
; any modification of the node data).

;. LEAFVISIT, method: Same as visit, but only for leafs.

; ADD, entry: Add the object entry to this node.

; KEYWORDS:

; SIBLING: Add entry as a sibling instead of default child.

; NOTE: An added sibling is always younger than any existing siblings.
; An added child inherits is made the sibling of any existing children.

; DELETE: Delete this node, and all of its desendents (recursively).
; NOTE: If this node has a parent, its child reference is assigned

; to the next younger sibling, if no older siblings exist. If no other

; siblings exist at all, the parent's child reference is cleared.

; PRUNE: Delete the entire tree *except* this node and its descendents,
. leaving this node as the root of the Tree.

; CLEANUP: (Automotically called)

; NOTES: Each node in the tree is represented by a single instance
; of this class. This tree has these properties: A node's list of

; children is the same list as its children's list of siblings.. not

; acopy, the *same* list -- modifying the children list at the same

; time modifies the children's sibling list. New generations can

; only be added at extremities of the tree, i.e. at those nodes
;which don't yet have children. Otherwise, new children will join

; those children already living. You may use SetValue to circumvent
; these limits, but beware: inbred trees may result.

Page 2 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; MODIFICATION HISTORY:

; 11/13/98 -- Added Leafs and LeafVisit. IDS

; 6/4/98 -- Removed Gen, changed ModPro to a Call_Method in Method. JDS
; 5/12/98 -- JD Smith

function ObjTree::Children
return, self.children
end

function ObjTree::Siblings
return, self.siblings
end

pro ObjTree::SetValue, CHILDREN=child, SIBLINGS=sib
if keyword_set(child) then begin
;; find out if list or pointer is passed
s=size(child,/TYPE)
if s eq 10 then begin ;it's a pointer
if child ne self.children then begin ;points at different heap vars?
ptr_free, self.children ;free memory of old list
self.children=child
endif
endif else begin
if ptr_valid(self.children) then *self.children=child $
else self.children=ptr_new(child)
endelse
endif
if keyword_set(sib) then begin
s=size(sib,/TYPE)
if s eq 10 then begin ;it's a pointer
if sib ne self.siblings then begin ;point at different heap vars?
ptr_free, self.siblings
self.siblings=sib
endif
endif else begin
*self.siblings=sib ;siblings must be valid, since *we're* alive.
endelse
endif

pro ObjTree::Leafs,list

Page 3 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

c=self.children
if ptr_valid(c) then begin
for i=0,n_elements(*c)-1 do (*c)[i]->Leafs, list
endif else begin ; | am a leaf!
if n_elements(list) eq 0 then list=self else list=[list,self]
endelse
end

pro ObjTree::Family,list
c=self.children
if ptr_valid(c) then begin
if n_elements(list) eq 0 then list=[*c] else list=[list,*C]
for i=0,n_elements(*c)-1 do (*c)[i]->Family, list
endif

; Visit: Recurs over my descendents, modifying the node data with a

; method "Method" (presumably of an inheriting class). Any keywords

; passed are given directly to Method to do with as it pleases

; (though in general it will modify or collect data). As a simple

; example, suppose each node had some data member which needed to be
; incremented. A method 'Increment' could do this, and be passed the
; INCREMENT to perform (as a keyword).

; e.g. thisNode->Visit, 'Increment’,INCREMENT=10

; Or maybe you need to collect some data, with

; e.g. thisNode->Visit, 'DataCollect’, OUTDATA=out

; for putting a summary of data into "out” (_ REF_EXTRA is employed).

pro ObjTree::Visit,Method, REF_EXTRA=e
if ptr_valid(self.children) then $
for i=0, n_elements(*self.children)-1 do begin
Call_Method,Method,(*self.children)[i], EXTRA=e
(*self.children)[i]->Visit,Method, EXTRA=e ;recurs, depth first!
endfor

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pro ObjTree::LeafVisit, Method, REF _EXTRA=e
if ptr_valid(self.children) then begin
for i=0, n_elements(*self.children)-1 do $
(*self.children)[i]->LeafVisit,Method, EXTRA=e
endif else begin
Call_Method, Method, self, EXTRA=e
endelse

; Add: Add element(s), as either children or siblings (children

; by default), to the current node (this object instance).

; Siblings added are always younger (later in list) than any existing
; siblings.. and children added are assigned to be younger than

; any children already present, and at their depth. This means

; that new generations can only be created at the bottom of the

; tree (if the root is at the top).

pro ObjTree::Add, list, SIBLINGS=sib
if keyword_set(sib) then begin ;inserting new sibling(s)
;; add them to the end of my list
*self.siblings=[*self.siblings,list]
;; set their siblings array the same as mine, freeing any old siblings
;; list if any (should't have any, inbred trees are trouble!)
for i=0,n_elements(list)-1 do $
list[i]->SetValue,SIBLINGS=self.siblings
endif else begin ;inserting a new child
if ptr_valid(self.children) then begin
;; add the children at the end of my children list
*self.children=[*self.children,list]
endif else begin
self.children=ptr_new(list)
endelse
;; set their *siblings* array be my *children* array, freeing any
;; siblings list if any (but there shouldn't really be).
for i=0,n_elements(list)-1 do $
list[i]->SetValue,SIBLINGS=self.children
endelse
end

; Delete: Delete this node and all descendents, clearing
; the child list of its parent if this node has no siblings.

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pro ObjTree::Delete
sibs=n_elements(*self.siblings) ;if only 1, I'm an only child.
if sibs eq 1 then self.siblings=ptr_new() else $
*self.siblings=(*self.siblings)[where(*self.siblings ne self)]
obj_destroy,self ;call cleanup recursively to kill descendents
end

; Prune: Delete everything in Tree except this node and it's
; descendents, leaving this node as the root of the Tree.

pro ObjTree::Prune, Tree
;; remove myself from my list of siblings (and from my parents list of
;; children -- it's the same list!!)
if n_elements(*self.siblings) gt 1 then $
*self.siblings=(*self.siblings)[where(*self.siblings ne self)] $
else $
self.siblings=ptr_new() ;I was an only child

;; Destroy the tree around us, as we hide, not on the list for destruction.
obj_destroy,Tree
Tree=self ;I am now the root of this tree!

end

pro ObjTree::Cleanup
;; Call Cleanup on children first, then cleanup the siblings list (which
;; will also free the children list of the siblings' parent).
if ptr_valid(self.children) then begin
obj_destroy,*self.children
endif
if ptr_valid(self.siblings) then ptr_free,self.siblings
end

pro ObjTree__define
> define a tree member class

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

struct={ObjTree, $

siblings:ptr_new(),$;an array of siblings (at least including me!)

children:ptr_new()} ;an array of children (possibly childless)
end

File Attachnents

1) objtree__define.pro, downl oaded 90 tines

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=64
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

