Subject: Re: 8-bit vs. 24-bit color on Windows
Posted by davidf on Fri, 22 Jan 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Liam Gumley (Liam.Gumley@ssec.wisc.edu) writes:

> When using IDL under Windows with a 24 bit display setting, the only way
> around this problem is to re-display your graphic after changing the

> color table. That's why David's XCOLORS program

> (http://www.dfanning.com/programs/xcolors.pro) includes a keyword which
> enables you to notify an external event handler that the color table has

> changed.

Note that XLOADCT now has a similar capability to call
an IDL procedure and pass it some "data” when the color
tables change. (Someone at RSI must *certainly* be
reading this newsgroup! :-)

| still like the "event" notification method, because |

think it is more general, but | did have some problems with
it last week when | taught a class on Macintosh computers.
We had to switch to the XLOADCT "procedure” notification
method to get our programs to work.

The problem seems to be that the Macintosh OS doesn't have
a way to actually "send" an event to another widget. I'm
guessing (I haven't heard a definitive answer from RSI yet)
that the "send event" functionality is hacked with a timer

event call, because my XCOLORS program acts as though it is
sending event after event after event. It is as though the

next timer event goes off before the first event is actually
processed. In any case, | get into a constant event notification
loop until I kill XCOLORS.

But after you get the hang of *somehow* notifying your programs
when colors change | guarantee you will NEVER go back to
8-bit color. There are just far too many advantages to

24-bit color. Why, | predict the whole world will be using

24-bit color soon. :-)

> BTW I've noticed image display problems (especially with grey scale

> images) under Windows when using a 16 bit display setting. The problems
> do not appear in 8 bit or 24 bit display modes (which are the modes

> supported by IDL).

I've never noticed this and | used to run in 16-bit colors

all of the time before | splurged on more memory for my

graphics driver. Although not officially supported, the

Page 1 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8976&goto=14097#msg_14097
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14097
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

only problem I've ever had with 16-bit color is a funny TVRD
thing where you have to switch the R and B vectors of the
color table. I'm not sure that is even still necessary.

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: 8-bit vs. 24-bit color on Windows
Posted by thompson on Fri, 22 Jan 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz <mgs@io.harvard.edu> writes:
... stuff deleted ...

> As | just got this new PC with Windows and IDL, | had thought that |

> woul dhave a very hard time running all my unix based IDL programs on it
> after | had read so many *color* questions (and David's answers) on this
> newsgroup. Turns out, it wasn't so bad after all: | made a few fixes to

> my myct program which | always use to load a colortable and define

> drawing colors, and voila, | can run all my programs, indexing colors

> from 0 to 255 as before (and | still have 16M colors available for

> further use ;-). Besides decomposed=0, the major trick seems to be to

> limit loadct and/or tvict to use only 256 colors at maximum. MyCT uses
> ID.N_Colors to determine the number of colors available in the system

> and (in it's latest version) truncates the actual maximum number that

> shall be used to 256 for compatibility with standard unix environments.

... stuff deleted ...

Thank you for that response. One question, though: Does loading the color
table in this way instantly change the colors of already displayed graphics, or
do you have to redisplay them to make the color table changes?

What I'm really looking for is a way to make already existing code work as it

did in the past, without recourse to new software, and particularly without

recourse to redisplaying graphics. That includes the traditional tools such as
LOADCT and XLOADCT, as well as any other color-table manipulation routines that
have been developed over the years. Pseudo-color is much more appropriate for

Page 2 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8976&goto=14099#msg_14099
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14099
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the kind of scientific analysis that | do than any kind of 24-bit color. There
really should be a way to let IDL use pseudo-color on a Windows display, if
that's what's desired, while other programs can take advantage of the full
capabilities of 24-bits if appropriate. This can be done on other platforms,
why not Windows?

William Thompson

Subject: Re: 8-bit vs. 24-bit color on Windows
Posted by Liam Gumley on Fri, 22 Jan 1999 08:00:00 GMT

View Forum Message <> Reply to Message

William Thompson wrote:

| know this question has been asked many times before, but I'm afraid | don't
remember what the answer is. Is there any way to convince IDL to use 8-bit

pseudo-color on a Windows computer with a 16-bit or higher display? | know
that in other operating systems this is done by using

DEVICE,PSEUDO_COLOR=8
However, this is not supported under Windows. | tried
DEVICE,DECOMPOSED=0

which the documentation claims will make routines work like they did before,
but this doesn't appear to be the whole story. With DECOMPOSED=0, data will
come up with the correct color, but only if they are displayed after the color
table is loaded. This is unacceptable. There must be another step to convince
IDL to use 8-bit pseudo-color, and if there isn't then RSI must address this.

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> |'ve checked David Fanning's Coyote Guide (http://www.dfanning.com/), but the
> only suggestion | could find there that meets my needs is to set Windows to run
> at 256 colors. I'm perfectly happy to do that, but it would be nice to be able

> to use 16-bit or 24-bit for those programs which need it, and 8-bit color for

> |IDL. This is possible in other operating systems; can it be done in Windows?
When using IDL under Windows with a 24 bit display setting, the only way

around this problem is to re-display your graphic after changing the

color table. That's why David's XCOLORS program
(http://www.dfanning.com/programs/xcolors.pro) includes a keyword which
enables you to notify an external event handler that the color table has

changed.

BTW I've noticed image display problems (especially with grey scale
images) under Windows when using a 16 bit display setting. The problems
do not appear in 8 bit or 24 bit display modes (which are the modes
supported by IDL).

Page 3 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8976&goto=14100#msg_14100
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14100
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,
Liam.

Liam E. Gumley

Space Science and Engineering Center, UW-Madison
1225 W. Dayton St., Madison WI 53706, USA

Phone (608) 265-5358, Fax (608) 262-5974
http://cimss.ssec.wisc.edu/~gumley

Subject: Re: 8-bit vs. 24-bit color on Windows
Posted by Martin Schultz on Fri, 22 Jan 1999 08:00:00 GMT

View Forum Message <> Reply to Message

William Thompson wrote:

| know this question has been asked many times before, but I'm afraid | don't
remember what the answer is. Is there any way to convince IDL to use 8-bit

pseudo-color on a Windows computer with a 16-bit or higher display? | know
that in other operating systems this is done by using

DEVICE,PSEUDO_COLOR=8
However, this is not supported under Windows. | tried

DEVICE,DECOMPOSED=0

but this doesn't appear to be the whole story. With DECOMPOSED=0, data will
come up with the correct color, but only if they are displayed after the color
table is loaded. This is unacceptable. There must be another step to convince
IDL to use 8-bit pseudo-color, and if there isn't then RSI must address this.

>

>

>

>

>

>

>

>

>

>

>

>

> which the documentation claims will make routines work like they did before,
>

>

>

>

>

> |'ve checked David Fanning's Coyote Guide (http://www.dfanning.com/), but the
> only suggestion | could find there that meets my needs is to set Windows to run
> at 256 colors. I'm perfectly happy to do that, but it would be nice to be able

> to use 16-bit or 24-bit for those programs which need it, and 8-bit color for

> |IDL. This is possible in other operating systems; can it be done in Windows?
>
>

William Thompson

As | just got this new PC with Windows and IDL, | had thought that |

woul dhave a very hard time running all my unix based IDL programs on it
after | had read so many *color* questions (and David's answers) on this
newsgroup. Turns out, it wasn't so bad after all: | made a few fixes to

my myct program which | always use to load a colortable and define

Page 4 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8976&goto=14102#msg_14102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

drawing colors, and voila, | can run all my programs, indexing colors
from 0O to 255 as before (and | still have 16M colors available for
further use ;-). Besides decomposed=0, the major trick seems to be to
limit loadct and/or tvict to use only 256 colors at maximum. MyCT uses
ID.N_Colors to determine the number of colors available in the system
and (in it's latest version) truncates the actual maximum number that
shall be used to 256 for compatibility with standard unix environments.

Please find the latest source for myct.pro attached - if you don't want
to use the program as such, it may give you some idea about the control
over colors.

Regards,
Martin.

Dr. Martin Schultz
Department for Engineering&Applied Sciences, Harvard University
109 Pierce Hall, 29 Oxford St., Cambridge, MA-02138, USA

phone: (617)-496-8318
fax :(617)-495-4551

e-mail: mgs@io.harvard.edu
Internet-homepage: http://www-as.harvard.edu/people/staff/mgs/

: NAME:
) MYCT

; PURPOSE:

; Define a set of standard drawing colors and load a

; colortable on top of these. The color table can be manipulated
; in various ways (see KEYWORD PARAMETERS).

; Standard drawing colors are:

; 0 : white 11 : black

; 1 : black 12 : 85% grey
; 2 :red 13:67% grey

; 3 :green 14 : 50% grey
; 4 : blue 15: 33% grey
; 5 : yellow 16 : 15% grey
: 6 : magenta 17 : white

X 7 :cyan

: 8 : lightred

; 9 : lightgreen

Page 5 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

10 : lightblue

; CATEGORY:

color table manipulation

; CALLING SEQUENCE:

MYCT table [,keywords]

; INPUTS:

TABLE --> [optional] number of the color table to be used
If no number is provided, the routine will only define
the standard drawing colors (unless NO_STD is set).
MYCT will always load a dummy colortable, therefore
it ensures that the system variable 'D.N_COLORS is set
correctly afterwards. If you want to define the number
of available colors by using a dummy WINDOW command
(see IDL help), you must issue the WINDOW command *before*
the call to myct.

; KEYWORD PARAMETERS:

BOTTOM --> specify where to start color table (see BOTTOM keyword
in loadct). Default is number of standard drawing colors+1
or 0 (if NO_STD is set). If BOTTOM is less than the number
of standard drawing colors (17), no standard colors will be
defined (equivalent to setting NO_STD).

NCOLORS --> number of color indices to be used by the color table.
Default is 'D.N_COLORS-BOTTOM

RANGE --> a two element vector which specifies the range of colors
from the color table to be used (fraction 0-1). The colortable
is first loaded into the complete available space, then
the selected portion is interpolated in order to achieve the
desired number of colors.
RANGE is only effective when a TABLE parameter is given.

REVERSE --> reverse color table
SATURATION --> factor to scale saturation values of the extra
color table. Saturation ranges from 0..1 (but the factor

is free choice as long as positive)

VALUE --> factor to scale the "value" of the added colortable.
Value ranges from 0..1; 0 = black, 1 = white.

NO_STD --> prevents definition of standard drawing colors.

; OUTPUTS:

Page 6 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; SUBROUTINES:

; REQUIREMENTS:

; NOTES:

It is recommended to use the COLOR= keyword in all PLOT commands.
This will ensure correct colors on (hopefully) all devices.

In order to get 256 colors on a postcript printer use
DEVICE,/COLOR,BITS PER_PIXEL=8

; EXAMPLE:

.comp myct ; needed to invoke testmyct program
testmyct ; draw a sine wave with all available colors
myct,8,/no_std ; load colortable green-white

; identical result as loadct,3
wait,4
myct,27,NCOLORS=20 ; change first 16 colors to standard drawing
; colors and add EOS-B color table as color
; index 17 to 36
wait,4
myct,0,bottom=37,ncol=20,/reverse,/no_std
; add reversed grey scale table on top
wait,4
myct,27,bottom=57,ncol=40,/no_std,range=[0.1,0.7],sat=0.7
; add a less saturated version of a fraction
; of the EOS-B color table in the next 40 indices
; NOTE that color indices above 97 will still contain the upper
; portion of the green-white color table.

On b/w terminals MYCT can be used to revert black and white:
myct,0,/rev  (may need further testing and development)

; MODIFICATION HISTORY:

mgs, 06 Feb 1997: VERSION 1.00

mgs, 03 Aug 1997: added input parameter and template

mgs, 26 Mar 1998: added NCOLORS keyword

mgs, 06 Apr 1998: added BOTTOM, RANGE, and RGB keywords

mgs, 04 May 1998: added test for null device

mgs, 03 Jun 1998: return if ID.N_COLORS is less than 3 (b/w)

mgs, 16 Jun 1998: bug fix: range check now after tvict

mgs, 18 Jul 1998: bug re-visited, added HLS keyword and changed
default to HSV. Also added Saturation and Value keywords.

mgs, 12 Aug 1998: re-written with bug fixes and more concise.
removed RGB and HLS keywords, added REVERSE and NO_STD
keywords.

mgs, 14 Jan 1999: limit oldcolors and ncolors to MaxColors (256)
on PC with TrueColor Graphics to ensure compatibility

Page 7 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

) with Unix.

; Copyright (C) 1997-1999, Martin Schultz, Harvard University

; This software is provided as is without any warranty

; whatsoever. It may be freely used, copied or distributed

; for non-commercial purposes. This copyright notice must be

; kept with any copy of this software. If this software shall

; be used commercially or sold as part of a larger package,

; please contact the author to arrange payment.

; Bugs and comments should be directed to mgs@io.harvard.edu
; with subject "IDL routine myct"

pro myct,table,BOTTOM=bottom,NCOLORS=ncolors,RANGE=range, $
REVERSE=REVERSE_COLORS,SATURATION=saturation,VALUE=value, $
NO_STD=NO_STD

; check for NULL device. Can be used to identify remote IDL sessions
if (!d.name eq 'NULL") then return

; color vectors for standard drawing colors
red =[ 255, 0,255, 0, 0,255,255, 0,255,127,127,0,90,150,188,220,240,255]
green=[ 255, 0, 0,255, 0,255, 0,255,127,255,127,0,90,150,188,220,240,255]
blue =[ 255, 0, 0, 0,255, 0,255,255,127,127,255,0,90,150,188,220,240,255]

no_std = keyword_set(no_std)

if (n_elements(bottom) eq 0) then begin
if (no_std) then bottom =0 $
else bottom = n_elements(red)

endif

; limit NCOLORS to 256 on TrueColor PC to ensure compatibility

if (n_elements(ncolors) eq 0) then ncolors = ( !d.n_colors-bottom > 2 ) < 256
if (n_elements(saturation) eq 0) then saturation = 1. ; leave unchanged

if (n_elements(value) eq 0) then value = 1. ; leave unchanged

if (bottom It n_elements(red)) then no_std =1

Page 8 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Set maximum allowed color number
; For now, restrict to 256 to ensure compatibility between

; Get current entries in colortable

; NOTE: Upon startup,

; * the colortable results in 256 grey scale entries
; * ID.N_Colors is not defined correctly

tvict,rback,gback,bback,/get

; remember number of colors available
; may change after !D.N_Colors is determined correctly
oldcolors = !D.N_COLORS

; if no table is specified, load only two colors:

; this should be save also on b/w terminals

if (n_elements(table) eq 0) then begin
loadct,0,bottom=0,ncolors=2

endif else $

; if RANGE is given, use all available color indices
if (n_elements(RANGE) eq 2) then begin

loadct, table, bottom=0
endif else $

; otherwise load number of colors desired
begin

loadct, table, bottom=0, ncolors=ncolors
endelse

; get entries of new color table
tvict, r,g,b, /get

; At this point, the correct value of ID.N_Colors has been
; determined. Adjust MaxColors if necessary
MaxColors = ( MaxColors < ID.N_Colors)

Page 9 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; On b/w terminals: does the following help ?? ###
; if {D.N_COLORS It 3) then return

; if number of available colors has changed due to loadct
; (i.e. during IDL startup) then create dummy backup color
; arrays with the correct number of colors.
; Limit array size to MaxColors
; (Don't change top value: this indicates the byte entry 'white’
; and is not a color index!)
if (ID.N_COLORS ne oldcolors) then begin
rback = bytscl(findgen(MaxColors),top=255)
gback = rback
bback = rback
endif

; adjust value of NCOLORS, BOTTOM and NO_STD if necessary
if (bottom ge MaxColors) then begin

bottom =0
no std=1
endif

if (bottom+ncolors gt MaxColors) then $
ncolors = MaxColors-bottom > 2

; If RANGE is provided, extract subset and interpolate colortable
if (n_elements(RANGE) eq 2) then begin
; convert percentage to index
irange = fix( (range < 1.0) * MaxColors )
if (irange(0) eq irange(1)) then $
irange(1) = irange(0)+1
irange = ( (irange(sort(irange)) > 0) < (MaxColors-1) )

; print,'##IRANGE:",IRANGE

Page 10 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; extract portion of colortable that shall be used
r = r(irange[O]:irange[1])

g = g(irange[O]:irange[1])

b = b(irange[0]:irange[1])

; and interpolate

HSV_EXPAND:
COLOR_CONVERT,r,g,b,h,s,v,/RGB_HSV
; expand and interpolate color values
h = congrid(h,fix(NCOLORS),/interp)
s = congrid(s,fix(NCOLORS),/interp)
v = congrid(v,fix(NCOLORS),/interp)

; help,r,h

endif else $

; if no range given, extract number of colors requested and
; convert them to HSV
begin
COLOR_CONVERT,r(0:ncolors-1),g(0:ncolors-1),b(0:ncolors-1),h ,s,v,/RGB_HSV
endelse

: revert colortable if wished

if (keyword_set(REVERSE_COLORS)) then begin
h = reverse(h)
S = reverse(s)
v = reverse(v)

endif

; color_convert,h,s,v,rr,gg,bb,/hsv_rgb & print,rr,gg,bb

s = ((s * saturation) >0) < 1
v=((v*value) >0)<1

; restore original first, then overwrite.
; (if too flickering, think new)

tvict,rback,gback,bback

Page 11 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

tvlct,h,s,v,bottom,/HSV

ONLY_SET_DRAWINGCOLS:

if (n_elements(red) le !'D.N_COLORS AND no_std eq 0) then $
TVLCT, red, green, blue

end

 kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhkkkhkkkhkkkkkkkkkkkkkkkkhkk
’

pro testmyct

; test program for myct
; call testmyct, then invoke myct with various options
Ip.position=[0.04,0.04,0.97,0.97]

myct,0,/no_std
x=findgen(!D.n_colors)/'D.N_COLORS*!IPI*4
y = sin(x)

c=bytscl(x,top=!D.n_colors)

plot,x,y,/nodata,xstyle=5,ystyle=5
plots,x,y,psym=sym(1),symsize=1.3,col=c

Ip.position=0
end

File Attachnments

1) nyct.pro, downl oaded 102 ti nes

Subject: Re: 8-bit vs. 24-bit color on Windows
Posted by steinhh on Sat, 23 Jan 1999 08:00:00 GMT

View Forum Message <> Reply to Message

In article <78avv7$2lg@post.gsfc.nasa.gov>
thompson@orpheus.nascom.nasa.gov (William Thompson) writes:

> Thank you for that response. One question, though: Does loading the color
> table in this way instantly change the colors of already displayed graphics,
> or do you have to redisplay them to make the color table changes?

Page 12 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=71
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8976&goto=14096#msg_14096
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14096
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> What I'm really looking for is a way to make already existing code work as it

> did in the past, without recourse to new software, and particularly without

> recourse to redisplaying graphics. That includes the traditional tools such

> as LOADCT and XLOADCT, as well as any other color-table manipulation routines
> that have been developed over the years. Pseudo-color is much more

> appropriate for the kind of scientific analysis that | do than any kind of

> 24-bit color. There really should be a way to let IDL use pseudo-color on a

> Windows display, if

> that's what's desired, while other programs can take advantage of the full

> capabilities of 24-bits if appropriate. This can be done on other platforms,

> why not Windows?

I'm not 100% sure, but | seem to remember that when David F. was here, he
was very surprised to see that our 24-bit alpha displays did indeed

change the on-screen colors automatically in pseudo-8-bit mode. Isn't

that right, David?

| think we agreed that this must be a feature that varies from one X

Window implementation to another, possibly with some hardware dependency
as well. I don't have a 24-bit display myself, so I'm not able to check

exactly which settings that do (do not) produce this effect, but it might

be interesting to have others report whether they're able to reproduce it

on other (X Windows) platforms..

Regards,

Stein Vidar

Page 13 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

