
Subject: Idea for an IDL numerical toolbox
Posted by Liam Gumley on Mon, 12 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

In light of some recent discussions about calling FORTRAN routines from
within IDL, I started thinking about how one might go about putting
together an IDL toolbox based on a well-known freely available FORTRAN
library such as LAPACK (http://www.netlib.org/lapack).

One reason to do this would be to extend the numeric capabilities of IDL
by making use of a very well tested FORTRAN library that is available in
optimized form for many architectures, e.g.
SGI: http://www.sgi.com/software/scsl.html
Sun:
 http://www.sun.com/workshop/performance/wp-perflib/capabilit ies.html
and is also freely available in source form (see LAPACK link above).

Another reason would be to help combat a view I've heard from some
Matlab users, which is that IDL is not well suited to intensive
numerical computations.

Some items of information that I think could be relevant:

(1) It seems like there would be a fair amount of work involved in
writing the C wrappers and IDL interface routines for a large FORTRAN
library. Could this be automated somehow? NAG markets something called
the NAGWare Gateway Generator, which is described at
http://www.nag.co.uk/nagware/NN.html. Here's a quote:

"The NAGWare Gateway Generator (NGG) produces an interface that
seamlessly integrates Fortran subprograms with MATLAB. It analyses the
source code of a Fortran routine and automatically generates a MATLAB
gateway. This allows the user to access the Fortran subprogram as if it
were any other MATLAB command. Both forward and reverse gateways can be
generated. Reverse gateways allow the Fortran program to access MATLAB
commands and scripts."

There is a very nice freely available FORTRAN analyzer named ftnchek,
available at http://www.dsm.fordham.edu/~ftnchek which will
automatically extract information about the arguments of a FORTRAN
subroutine. Using this tool it shouldn't be too difficult to build a
script that automatically creates a C wrapper and IDL interface routine
for a FORTRAN subroutine.

(2) There are a number of well documented and tested freely available
FORTRAN numerical libraries built around LAPACK, one of which is "The
Control and Systems Library SLICOT", available at
http://www.win.tue.nl/niconet/NIC2/slicot.html

Page 1 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=14929#msg_14929
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14929
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(3) Some work would be needed to make the compiling options work
seamlessly on all IDL platforms (Unix at least). Right now it seems like
the first time someone tries to link IDL with FORTRAN, there's a steep
learning curve. I'm thinking of a package that can be downloaded,
installed once, and then used directly from IDL without the user having
to worry about how it was compiled or linked. The package would be smart
enough to check (at installation time?) for the presence of optimized
LAPACK on the host architecture, and if it was not present, LAPACK would
be compiled from source.

Sounds like a nice cooperative project for the readers of
comp.lang.idl-pvwave.

Any comments? Volunteers?

Cheers,
Liam.

Liam E. Gumley
Space Science and Engineering Center, UW-Madison
http://cimss.ssec.wisc.edu/~gumley

Subject: Re: Idea for an IDL numerical toolbox
Posted by Liam Gumley on Tue, 13 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Hey Stein,

I'm glad to see I got you fired up.

Stein Vidar Hagfors Haugan wrote:
> One of the most difficult tasks is probably to figure out
> which parameters are input vs output, and thus what kind of
> initialization should be applied. That's why I'm including all
> comments from the fortran subroutine header in the C wrapper
> file.

While ftnchek can help in figuring out the type and size of arguments,
e.g.

ftnchek -makedcls=4 test.f

you correctly point out that deciding which arguments are input vs.
output is tricky. It seems to me there would have to be some simple
rules, e.g.

Page 2 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=15008#msg_15008
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15008
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(1) There is always an IDL wrapper for the routine being called (the IDL
wrapper calls a C wrapper, which calls the FORTRAN routine).
(2) The IDL wrapper routine checks each of the arguments passed to it
for existence, type, and size:
- If an argument is undefined, it must be output. So the argument is
created, according to the requirements of the particular FORTRAN
routine.
- If an argument is defined, it must be input. So the argument is
checked for the correct type and size. If it does not have the correct
type and size, the wrapper program generates an error message.

The description of the NAG Gateway Generator talks about a GUI front end
which allows the user to customize the input and output argument
definitions - we could do one in IDL!

FORTRAN allows subroutines and functions, much like IDL. Functions are
similar to IDL in that they return a variable of a particular type.
Here's a very simple example:

 FUNCTION SQUARE(X)
 REAL SQUARE, X
 SQUARE = X * X
 END

Just like in IDL, the name of the function is treated as a variable.
FORTRAN subroutines and functions can accept variables and function
names as arguments.

> Yep. Using RSI's makefiles as a template by replacing "their"
> file names with yours is a good start, though. To circumvent
> RSI's needlessly strict copyrights on these files (it only
> hurts themselves) one could distribute patches only..?

Well we could always create our own makefiles, and just distribute
compiled libraries. That way users don't have to wait while LAPACK
compiles on their box (they might not have a FORTRAN compiler anyway).

> Volunteers? Who, me? No! ...aaaaaaaargh....I'm losing control
> over my fingers....... Ok - watch this space for an updated
> version of "dlmform" - Version 1 follows below.

I'll give your perl script a go.

Cheers,
Liam.

Page 3 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Liam E. Gumley
Space Science and Engineering Center, UW-Madison
http://cimss.ssec.wisc.edu/~gumley

Subject: Re: Idea for an IDL numerical toolbox
Posted by steinhh on Tue, 13 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

In article <37124B1B.73391DCB@ssec.wisc.edu> Liam Gumley
<Liam.Gumley@ssec.wisc.edu> writes:

> In light of some recent discussions about calling FORTRAN routines from
> within IDL, I started thinking about how one might go about putting
> together an IDL toolbox based on a well-known freely available FORTRAN
> library such as LAPACK (http://www.netlib.org/lapack).

I couldn't help it, either.... It's a really intriguing
thought.

> Another reason would be to help combat a view I've heard
> from some Matlab users, which is that IDL is not well suited
> to intensive numerical computations.

And this is partly true, with the current lack of such
libraries.

> Some items of information that I think could be relevant:
>
> (1) It seems like there would be a fair amount of work
> involved in writing the C wrappers and IDL interface
> routines for a large FORTRAN library. Could this be
> automated somehow?

Uh - I spent yesterday investigating this - - the best thing I
could come up with was a simple yet ugly perl script (I'm by
no means a perl expert) geared towards the functions written
by Shanjie Zhang and Jianming Jin which were mentioned here
yesterday (http://iris-lee3.ece.uiuc.edu/~jjin/specfunc.html).

The script (attached at the end of this post) processes one of
their *.for files to produce:

a *.f file (with the main program commented out),
a *.c file with stubs for the C wrappers, including:
 All comments from the fortran subroutine header
 Decl./assignment of all parameters' variable pointers
 Best guesses as to the type/dimensions of parameters

Page 4 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=15012#msg_15012
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15012
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 For each variable, a block of IDL_EXCLUDE/IDL_ENSURE
 macro calls to be edited by a programmer.
 An appropriate IDL_Load() routine to install the
 encountered procedures.
a *.dlm file that'll make the functions visible as system
 routines within IDL.

The *.c file will not be overwritten if it already exists.
Only the *.c file will need to be edited by the user.

My knowledge of fortran is *minimal*, so it's probably not
difficult to make routines that break this script. Does
fortran have *functions*, btw? My script assumes procedures
only...

The script does (sort of) handle implicit typing, whenever
it's spelled out in the program (not the default stuff,
because I know too little about it...:-)

> NAG markets something called the NAGWare Gateway Generator,
> which is described at http://www.nag.co.uk/nagware/NN.html.

Though this is a commercial package.... which of course also
will promote the sales of the NAG software itself... just a
hint on how much work needs to be spent to develop a *fully*
automatic scheme.. But it could (should?) be in RSI's
interests to do something like this!

One of the most difficult tasks is probably to figure out
which parameters are input vs output, and thus what kind of
initialization should be applied. That's why I'm including all
comments from the fortran subroutine header in the C wrapper
file.

> There is a very nice freely available FORTRAN analyzer named
> ftnchek, available at http://www.dsm.fordham.edu/~ftnchek
> which will automatically extract information about the
> arguments of a FORTRAN subroutine. Using this tool it
> shouldn't be too difficult to build a script that
> automatically creates a C wrapper and IDL interface routine
> for a FORTRAN subroutine.

THANKS! Wow - why didn't I know about this yesterday! No
problems installing it on Digital Unix, btw.

> (2) There are a number of well documented and tested freely
> available FORTRAN numerical libraries built around LAPACK...

Page 5 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> (3) Some work would be needed to make the compiling options work
> seamlessly on all IDL platforms (Unix at least). Right now it seems like
> the first time someone tries to link IDL with FORTRAN, there's a steep
> learning curve.

Yep. Using RSI's makefiles as a template by replacing "their"
file names with yours is a good start, though. To circumvent
RSI's needlessly strict copyrights on these files (it only
hurts themselves) one could distribute patches only..?

> I'm thinking of a package that can be downloaded,
> installed once, and then used directly from IDL without the user having
> to worry about how it was compiled or linked. The package would be smart
> enough to check (at installation time?) for the presence of optimized
> LAPACK on the host architecture, and if it was not present, LAPACK would
> be compiled from source.

Sounds nice!

> Sounds like a nice cooperative project for the readers of
> comp.lang.idl-pvwave.

Sounds very nice, indeed.

> Any comments? Volunteers?

Volunteers? Who, me? No! ...aaaaaaaargh....I'm losing control
over my fingers....... Ok - watch this space for an updated
version of "dlmform" - Version 1 follows below.

Regards,

Stein Vidar

 dlmform:-- ----

#!/local/bin/perl

###
write_header(CFILE);
###
sub write_header {
 local (*FILE) = $_[0];
 print FILE <<HEADER_STOP;
#include <unistd.h>
#include <stdio.h>

Page 6 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

#include "export.h"

#define NULL_VPTR ((IDL_VPTR) NULL)

#define GETVARDATA(v,n) ((v->flags&IDL_V_ARR) \\
 ? (*(n) = v->value.arr->n_elts, v->value.arr->data) \\
	: (*(n) = 1, & v->value.c))

HEADER_STOP
}

###
write_funcheader(CFILE,funcname)
###

sub write_funcheader {
 local (*FILE,$funcname) = @_;
 print FILE <<FUNCHEADER_STOP;
IDL_VPTR \U$funcname\E(int argc, IDL_VPTR argv[])
{
FUNCHEADER_STOP

}

###
write_sysfun_defs(CFILE,@funs,@nargs)
###

sub write_sysfun_defs {
 local (*FILE,*funs,*nargs) = @_;

 local (@nparms) = @nargs;

 print FILE <<LOADSTOP;
int IDL_Load(void)
{
 static IDL_SYSFUN_DEF proc_def[] = {
LOADSTOP

 foreach $fun (@funs) {
	$narg = shift(@nparms);
	$comma = $#nparms+1 ? "," : "";

Page 7 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	print FILE << ;
	{(IDL_FUN_RET) \U$fun\E,"\U$fun\E",$narg,$narg}$comma

 }
print FILE <<LOADSTOP2
 };

 return IDL_AddSystemRoutine(proc_def,FALSE,$#funs+1);
}
LOADSTOP2

}

###
write_dlm_file(DLMFILE,$module,@funs,@nargs)
###
sub write_dlm_file {
 local (*FILE,$module,*funs,*nargs) = @_;
 local (@nparms) = @nargs;
 local ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
	gmtime(time);

 print FILE <<DLM_STOP;
Automatically generated from Fortran source file
MODULE \U$module\E
DESCRIPTION Fortran function(s): @funs
BUILD_DATE $mday $mon $year
SOURCE Perl script
DLM_STOP

 foreach $fun (@funs) {
	$narg = shift(@nparms);
	print FILE "PROCEDURE \U$fun\E $narg $narg\n";
 }
}

 ## #####
Parses possible declaration a la "CHARACTER P(155)*4,P2(10)"

1st arg is input line to parse
2nd arg is e.g. "CHARACTER"
3rd arg is the type ("" if 2nd arg is DIMENSION)
4th arg is *var
5th arg is *type
6th arg is *dim

sub parselist

Page 8 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

{
 local($_,$srch,$thistype,*var,*type,*dim) = @_;

 if (/(\b$srch\s*)/) {
	
	$matchsofar = $1;
	while (/($matchsofar([^\n,]+),*)/) {
	 $matchsofar = $1;
	 $decl = $2;
	 $matchsofar =~ s/\(/\\\(/g; # Escape (
	 $matchsofar =~ s/*/*/g; # Escape *
	 $matchsofar =~ s/\)/\\\)/g; # Escape)
	 $decl =~ /(\w+)\b([^,]*)/;
	 $thisvar = $1;
	 $thisdim = $2;
	 VARLOOP: for ($j=0; $j<=$#var; $j++) {
		if ($var[$j] =~ /^$thisvar$/) {
		 $type[$j] = $thistype if $type[$j] eq "";
		 $dim[$j] = $thisdim if $dim[$j] eq "";
		}
	 }
	}
 }
}

LINE:
while (<>) {

 # NEW FILE:
 if ($ARGV ne $oldargv) {
	$oldargv = $ARGV;
	$module = $ARGV;
	$module =~ s/\.for//;
	
	open (FORTRAN,">$module.f");
	select(FORTRAN);
	
	if (!-f "$module.c") {
	 open (CFILE,">$module.c"); # Open C file
	 do write_header(CFILE);
	}
	
	open (DLMFILE,">$module.dlm"); # Open DLM file

	# Zero lists.
	@funs = ();
	@nargs = ();

Page 9 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	do {
	 # Main program should be commented out!
	 s/^([^C])/C$1/;
	 print;
	 $_ = <>;
	} until (/\bEND\b/);
	s/^([^C])/C$1/;
	print;
	next LINE;
 }

 print;

 if (/^C/) {
	s/^C//;
	s/^ //;
	s/\n//;
	$commlen = length if $commlen < length;
	$_ .= " " while length lt $commlen;
	@comments = (@comments,"/* $_ */\n");
	next LINE;
 }

 # Find SUBROUTINE declarations & parameters.

 ($sn,$var,$r) = /\bSUBROUTINE\b\s*(\w+)\s*\((\w+),?(.*)/;
 if ($sn) {
	$subname = $sn;
	$_=$r;
	@comments = (); # Initialize lists of information for this routines
	$commlen = 10;
	@var = ();
	@type = ();
	@dim = ();
	@implicit = ();
	@implicitl = ();

	while ($var) {
	 @var = (@var,$var);
	 @type = (@type,"");
	 @dim = (@dim,"");
	 ($var,$_) = /\s*(\w+),?(.*)/;
	}
 }

 # Find IMPLICIT declarations for this routine.

Page 10 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ($type,$letters) = /\bIMPLICIT\s*(.*)\s*\((.*)/;
 if ($type) {
	$letters =~ s/\)//; # Take away end parenthesis
	$letters =~ s/,//; # Take away commas to use as eg [A-FH-J]
	@implicit = (@implicit,$type);
	@implicitl = (@implicitl,$letters);
 }

 do parselist($_,"CHARACTER","CHARACTER",*var,*type,*dim);
 do parselist($_,"DIMENSION","",*var,*type,*dim);

 # Print out routine stub if it's the end of the routine

 if (/\bEND\b/ & !eof(CFILE)) {
	
	print CFILE @comments;

	print CFILE "\n";
	
	do write_funcheader(CFILE,$subname);
	
	@funs = (@funs,$subname);
	@nargs = (@nargs,$#var+1);

	for ($i=0; $i<=$#var; $i++) {
	 $lvar = $var[$i];
	 $type = $type[$i];
	 $dim = $dim[$i];
	 @letters = @implicitl;
	
	 foreach $imp (@implicit) {
		$letters = shift(@letters);
		if ($type eq "" && $lvar =~ /^[$letters]/) {
		 $type = $imp;
		}
	 }
	 print CFILE " IDL_VPTR $var[$i]=argv[$i]; ";
	 print CFILE "/* $lvar : $type : $dim */\n";
	}

	print CFILE "\n\n";

	for ($i=0; $i<=$#var; $i++) {
	 $lvar = $var[$i];
	 $type = $type[$i];
	 $dim = $dim[$i];

Page 11 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	 print CFILE " IDL_EXCLUDE_UNDEF($lvar);\n";
	 print CFILE " IDL_EXCLUDE_EXPR($lvar);\n";
	 print CFILE " IDL_ENSURE_SIMPLE($lvar);\n";
	 print CFILE " IDL_ENSURE_SCALAR($lvar);\n" if $dim eq "";
	 print CFILE " IDL_ENSURE_ARRAY($lvar);\n" if $dim ne "";
	 print CFILE " IDL_EXCLUDE_COMPLEX($lvar);\n"
		if $type !~ /COMPLEX/;
	 print CFILE " IDL_EXCLUDE_STRING($lvar);\n";
	
	 print CFILE "\n\n";
	}	
	print CFILE "\n\n\n\n\n\n\n\n}\n\n\n\n\n" if !eof(CFILE);
	
 }

 /\bEND\b/ && ($main = 0);

 if (eof) {
	do write_sysfun_defs(CFILE,*funs,*nargs);
	do write_dlm_file(DLMFILE,$module,*funs,*nargs);
	close CFILE;
	close DLMFILE;
 }

}

Subject: Re: Idea for an IDL numerical toolbox
Posted by rmlongfield on Tue, 13 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

In article <37124B1B.73391DCB@ssec.wisc.edu>,
 Liam Gumley <Liam.Gumley@ssec.wisc.edu> wrote about simplifying the
Fortran-IDL interface.

Hi Liam,	That was a really nice summary of what needs to be done in
order to make such a tool. Although I would find it interesting to work on
such a tool (mostly to learn something new), I do not have the time to
devote to it. It looks like a full time job to me.

Just a short note.
Rose

-----------== Posted via Deja News, The Discussion Network ==----------
http://www.dejanews.com/ Search, Read, Discuss, or Start Your Own

Page 12 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2691
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=15016#msg_15016
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15016
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Idea for an IDL numerical toolbox
Posted by Dr. G. Scott Lett on Wed, 14 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

I believe Michel Olagnon has a program that generates Fortran 90 interface
blocks, with INTENT() from fortran code. If I understand your problem, this
should help with a solution.

Try:

 http://www.ifremer.fr/ditigo/molagnon/fortran90/contenu.html

Liam Gumley <Liam.Gumley@ssec.wisc.edu> wrote in message
news:371357CE.BA2ACD10@ssec.wisc.edu...
> Hey Stein,
 <much good stuff snipped>
>
> you correctly point out that deciding which arguments are input vs.
> output is tricky. It seems to me there would have to be some simple
> rules, e.g.
>

Subject: Re: Idea for an IDL numerical toolbox
Posted by steinhh on Wed, 14 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Ok, now I think I have it....

With the assistance of the ftnchek utility, I have now
successfully generated several DLMs from f77 source files.

The script assumes that a *.for file and its *.dcl file
(generated with fntchek) is to be converted into a *.c file, a
*.f file (with no main program), and a *.dlm file.

Compiling the .c file and the .f file together into a
shareable object file makes the thing available for IDL, if
the IDL_DLM_PATH includes the directory.

It's a pretty "dumb" perl script, but it does the job for many
applications -- more info later (if I have the time, which I
really don't!), but for now you can take a look at

 http://www.astro.uio.no/~steinhh/idl/dlmform

Page 13 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=14984#msg_14984
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=14984
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=15062#msg_15062
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15062
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Regards,

Stein Vidar

Subject: Re: Idea for an IDL numerical toolbox
Posted by davidf on Fri, 16 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Mr.Stein Vidar Hagfors Haugan
University of Oslo
Oslo, Norway

Dear Mr. Haugan:

This is to inform you that you have been nominated
and are a finalist for the 1999 Coyote's Howl Award.
As you may or may not know, this award is given
annually (or whenever the committee gets around to it)
to the person who has made the most significant
contribution to the IDL newsgroup.

The person who nominated you had this to say about
your contribution:

 "God bless, Stein Vidar. I wouldn't have a clue
 how to link my FORTRAN code without him!"

This anonymous person also pointed out that your
solution of the LOG2 problem saved him weeks of work.

On behalf of the committee, let me extend to you our
sincerest gratitude and thanks for a job well done.

And on a personal note, let me assure you that even
though you have won the award five of the last seven
times it has been given, the committee will not hold
that against you. Although it is still early in the
year, I feel certain that your chances for another
trophy are excellent.

I will be in touch again just as soon as the votes
have been counted.

Very sincerely yours,

Dr. Wily J. Coyote
Coyote's Coordinating Committee Chairman (C^4)

Page 14 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=15041#msg_15041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Idea for an IDL numerical toolbox
Posted by steinhh on Fri, 16 Apr 1999 07:00:00 GMT
View Forum Message <> Reply to Message

..and now for the final version.

I'll even produce array- crunching system routines out of all-
scalar fortran functions.

See http://www.astro.uio.no/~steinhh/idl/dlmform.html

Regards,

Stein Vidar

Subject: Re: Idea
Posted by on Sun, 15 Jun 2008 08:21:26 GMT
View Forum Message <> Reply to Message

1/ Muistamme miten aikoinaan asbesti oli tie loistavaan tulevaisuuteen.

Miljoonat jarrupalat olivan mailman turvan tae, jne.. Asbesti oli

kunnes... ..!

liuotinmaailmat, kuin sen TARKOIN tiedettyyn turvallisuuteen ja

kunnes!

kaupata ja suorittaa myynit. Niin oli DDT pelastava koko kurjan maailman.

.!

Page 15 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=15042#msg_15042
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15042
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9385&goto=60774#msg_60774
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60774
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

4/Maailman energiamonopolien kuningasajatuas oli vaikka nyt
nakutuksenestoaine lyijyinen hermomyrkky. Toki jo Rokkefellerin

koska JUURI vaarallisuus takasi sen, ettei kukaan nyksityinen voisi

kaupunkilaisnmuorissa 70-luvun energiakriisin alta tavatiin huikeaa 30%

kasautumisista biotooppeihin kohtalokkaasti ja joku Nobelisti pari kertoili

valtiotoimin vaiettu kuoliaaksi! IAEA ei totta tosiaan STUK/SUPO:n kanssa
halua rahantuotolleen realisoijia ja haittaajia! Niin .. kunnes. .. kerran

Page 16 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

