Subject: Passing info and destroying widgets...
Posted by dirk on Mon, 21 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Here's something i can't figure out... I'm following the advice of DF and
communicating between my widgets with info structures. All is well, but now i
want to pass the info structure from the event handler back to the parent widget
with

WIDGET_CONTROL, event.top, SET_UVALUE-=lines, /INO_COPY

and then destroy the widget. But you can't do this, because WIDGET_CONTROL (i
think) dereferences event.top so that

WIDGET_CONTROL, event.top, /DESTROY

fails since it doesn't know where to look. (you can't even put in a dummy to hold
the event.top number, the widget itself is gone from that id)

Unfortunately, you can't /[DESTROQOY the top widget first and expect to set it's
UVALUE later, either. So what do i do here? | tried putting a flag in my

info structure to trigger the base widget destruction back in the widget
definition level (not in the event handler), but i can't figure out when the
program would be able to look at that newly inserted flag.

Thanks for your help. - Dirk

Subject: Re: Passing info and destroying widgets...
Posted by Liam Gumley on Mon, 21 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

David Fanning <davidf@dfanning.com> wrote in message
news:MPG.11d85d6ea2cc37d9897de@news.frii.com...

> Liam Gumley (Liam.Gumley@ssec.wisc.edu) gives us an
> example of a program that can record the last instance

> of a button push in a non-blocking, non-modal widget

> when he writes:

>> Here's an example which works in non-blocking mode:

No question it works. But | would argue that it works

for all the wrong reasons and is a *terrible* programming
practice in almost every instance. | mean, you can write

an object method that returns a data pointer too, but

by doing so you violate every tenet of good object programming
practice, in which the data should be encapsulated and

unseen by the outside world. Sucking the pointer out of

a widget program, except perhaps in the hands of just the

VVVVYVYVYVYVYV

Page 1 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=15898#msg_15898
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15898
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16026#msg_16026
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16026
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> best programmers, is a practice that is guaranteed, it
> seems to me, to get most of the rest of us in a hell of
> a lot of trouble.

Well | guess I'll have to say that my example only demonstrates that it
can be done, not that it necessarily *should* be done.

> |If you are going to recommend this, at the very least

> teach people how to use HEAP_GC at the same time because
> ['ll bet a ton of money there will be leaking memory

> right and left!

As the saying goes, there was good news and bad news in the release of
IDL5.0:

The good news was, it included pointers.
The bad news was, it included pointers.

My personal programming philosophy is to only use pointers where absolutely
necessary (e.g. for retaining information when a widget dies, or for storing
structure elements which are of unknown size and type until runtime). I've
never used HEAP_GC in any of my programs; | rely on simple wrappers like
those | posted at http://cimss.ssec.wisc.edu/~gumley/pointers.html to

prevent me from getting into memory leakage problems.

> As for me, I'm sticking to widget programs that clean
> themselves up and don't leave the user holding the bag,
> er, pointer. :-)

| agree that widget *users* (e.g. of David's fine XCOLORS routine) don't
want to know (and shouldn't be allowed to touch) the internals of
"shrink-wrapped" widget routines. But | think any IDL application developer
will eventually run across cases where items like information structures
need to be shared between widgets which are performing closely related
application-specific tasks.

Cheers,
Liam.

Subject: Re: Passing info and destroying widgets...
Posted by R.Bauer on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Liam Gumley wrote:

> "Robert S. Mallozzi" wrote:

Page 2 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2825
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16004#msg_16004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> | believe you must use XMANAGER in blocking mode for
>> this technique to work.

Here's an example which works in non-blocking mode:

:---cut here---
PRO TEST_EVENT, EVENT

;- Get pointer from top level base, then the info structure

widget_control, event.top, get_uvalue=ptr
info = *ptr

;- Handle the widget which caused this event

widget_control, event.id, get_uvalue=name

case 1 of
name eq 'Button 1' or name eq 'Button 2' : info.name = name
else : widget_control, event.top, /destroy

endcase

;- Update the info structure

*ptr = info

END

VVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

| aggree to this method because sometimes | have to handle a lot of MBytes
of data.

But in difference to your solution | am using a string in the tagname to
identify pointers. This gives me the possibility

to destroy the pointers before | destroy the widget.

| have posted the routine get_tagname as attachement.

free_ptr=get_tagname(map,' PTR*")
FOR i=0,N_TAGS(free_ptr)-1 DO PTR_FREE,free_ptr.(i)
WIDGET_CONTROL,map.base_0,/destroy
The number of pointers are not unlimeted, so they should carefully be
destroyed after usage. If you don't free pointers you are caught sometimes

later not knowing which to destroy.

Another important difference is that | don't copy the pointer into a normal

Page 3 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

variable. All changes are done directly on the pointer.
e.g.:

(*map.ptr_drawids)[i]=drawid

R.Bauer

; Copyright (c) 1998, Forschungszentrum Juelich GmbH ICG-1

; All rights reserved.

; Unauthorized reproduction prohibited.

; This software may be used, copied, or redistributed as long as it is not
; sold and this copyright notice is reproduced on each copy made. This
; routine is provided as is without any express or implied warranties

; whatsoever.

.y

: NAME:
; get_tagname

; PURPOSE:
. This function generates a new structure from a given structure by a search string

; CATEGORY:
; PROG_TOOLS/STRUCTURES

; CALLING SEQUENCE:
; Result=get_tagname(structure,search_string,[without=without])

; INPUTS:
; structure: The structure which should be scaned
; search_string: The string which should be used for searching in the structure

: OPTIONAL INPUTS:
;without: A string which should not included in the result

; OUTPUTS:
. The return value is a structure

Page 4 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; defined by the search parameter
; EXAMPLE:

; Result=get_tagname(inhalt,'pi*")
;gives back all tags starting with pi

; ** Structure <11867f8>, 1 tags, length=8, refs=1.:
X PI_NAME STRING 'Peter Mustermann'

; Result=get_tagname(inhalt,”*name’)
; gives back all tags ending with name

; ** Structure <1186108>, 4 tags, length=32, refs=1:
; PI_NAME STRING 'Peter Mustermann'

;. NAME STRING 'sin0'

; PARAM_LONG_NAME STRING 'SIN(X)'

; TIME_LONG_NAME STRING 'time'

; Result=get_tagname(inhalt,”*name*")
; gives back all tags including name

; ** Structure <1171ce8>, 5 tags, length=112, refs=1.:
; Pl_NAME STRING 'Peter Mustermann'

; GPARAM_NAMELIST STRING Array[10]

; NAME STRING 'sin0'

; PARAM_LONG_NAME STRING 'SIN(X)'

; TIME_LONG_NAME STRING ‘'time'

; Result=get_tagname(inhalt,”*name*',without="gparam_namelist’)
; gives back all tags including name without gparam_namelist

; ** Structure <1180108>, 4 tags, length=32, refs=1:
; Pl_NAME STRING 'Peter Mustermann'

. NAME STRING 'sin0Q'

; PARAM_LONG_NAME STRING 'SIN(X)'

; TIME_LONG_NAME STRING ‘time'

; Result=get_tagname(inhalt,'name")
. gives back the tag name named 'name’

; ** Structure <118ab68>, 1 tags, length=8, refs=1:
;. NAME STRING 'sin0'

; MODIFICATION HISTORY:
; Written by: R.Bauer (ICG-1), 1998-07-30

Page 5 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

FUNCTION get_tagname, struct,search_string,$
without = without

IF N_PARAMS() LT 2 THEN BEGIN
MESSAGE,'result=get_tagname(struct,search_string)',/info
RETURN,"'

ENDIF

n_search_string = N_ELEMENTS(search_string)-1
FOR 0=0,n_search_string DO BEGIN
search = (search_string[0])(0)

IF STRPOS(search,™) EQ -1 THEN BEGIN
only=1
begining=1 ; removed ;nn
tag_such=search

ENDIF

IF STRPOS(search,*) GT 0 THEN BEGIN
begining=1
only=0
tag_such=STRMID(search,0,STRPOS(search,*"))
ENDIF

IF STRPOS(search,*) EQ 0 THEN BEGIN
begining=0
only=0
IF STRPOS(reverse_text(search),*) NE O THEN BEGIN
tag_such=STRMID(search,1,STRLEN(search)-1)
ende=1
ENDIF ELSE BEGIN
ende=0
tag_such=STRMID(search,1,STRLEN(search)-2)
ENDELSE
ENDIF
CATCH,errvar

;if errvar ne 0 then goto , help
tag_such=STRUPCASE(tag_such)

tags=TAG_NAMES(struct)

Page 6 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

tcount= STRPOS(tags, tag_such)
count=WHERE(tcount NE -1,m)

IF mEQ O THEN RETURN,-1

IF KEYWORD_SET(begining) THEN BEGIN
count = WHERE(tcount EQ 0,m)
IF m EQ O THEN RETURN,-1

ENDIF

IF KEYWORD_SET(only) THEN BEGIN
a=WHERE(tags(count) NE tag_such,zaehler)
IF zaehler GT 0 THEN BEGIN

count(a)=-1
mcount=WHERE(count NE -1,m)
IFm EQ O THEN RETURN,-1
count=count(mcount)
ENDIF
ENDIF

IF KEYWORD_SET(ende) THEN BEGIN
en=WHERE(STRPOS(reverse_string(tags[count]),reverse_string(t ag_such)) EQ
0,count_en)
IF count_en GT 0 THEN count=count[en] ELSE RETURN,-1

ENDIF

IF N_ELEMENTS(without) GT 0 THEN BEGIN
without=STRUPCASE (without)
a=WHERE(tags(count) EQ without,zaehler)
IF zaehler GT 0 THEN BEGIN

count(a)=-1
mcount=WHERE(count NE -1,m)
count=count(mcount)
ENDIF
ENDIF

IF m GT 0 THEN BEGIN
keyws=tags(count)

FOR i=0 , N_ELEMENTS(count)-1 DO $
IF N_ELEMENTS(antwort) EQ 0 THEN
antwort=CREATE_STRUCT (keyws]i],struct.(count[i])) ELSE $

antwort=CREATE_STRUCT (antwort,keyws(i),struct.(count[i]))
ENDIF

Page 7 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ENDFOR

IF N_ELEMENTS(antwort) EQ 0 THEN BEGIN
MESSAGE,'nothing found like '+tag_such,/cont
RETURN,antwort

ENDIF

RETURN, antwort

END

File Attachnents

1) get tagnane.pro, downl oaded 101 tines

Subject: Re: Passing info and destroying widgets...
Posted by Martin Schultz on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Stein Vidar Hagfors Haugan wrote:
[A very interesting article in a very interesting thread ...]

The memory inefficiency is of course related to the fact that if
you're not using pointers, you need to provide a copy of the data
to the outside whenever the outside (user) needs to look at it,
like this:

IDL> data = obj->getdata()
IDL> print,sigma(data)

VVVVVVYVVYVYVYV

Hmmm. To avoid that whole /NOCOPY thing, | would probably
store the data as a pointer within the object, so
obj->getdata()
would return the pointer anyway. No need to call
obj->setdata(pointer)
afterwards if you are not manipulating the data itself. Here, of course
one probably has to differentiate between Stein's three user types
again: don't trust a scientist! He/she is most likely to manipulate the
data and not tell the object about it. Hence, there should probably be a
obj->Checkintegrity
method which retrieves type and dimensions of the data
before the objects accesses it (for plotting or whatever else).
Pun: you shouldn't call this method obj->IsInteger ;-)

Martin.

Page 8 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16011#msg_16011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

TN oo oo oo AT TN

Martin Schultz, DEAS, Harvard University, 29 Oxford St., Pierce 109,
Cambridge, MA 02138 phone (617) 496 8318 fax (617) 495 4551
e-mail mgs@io.harvard.edu web http://www-as/people/staff/mgs/

Subject: Re: Passing info and destroying widgets...
Posted by Liam Gumley on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Stein Vidar Hagfors Haugan wrote:
[many thoughtful comments removed]
> | must say | agree a lot more with Liam than David here.

That makes it all worthwhile!

| guess if | can spark a good discussion involving people who (unlike
me) actually know something, it's not all in vain.

Cheers,
Liam.

Liam E. Gumley
Space Science and Engineering Center, UW-Madison
http://cimss.ssec.wisc.edu/~gumley

Subject: Re: Passing info and destroying widgets...
Posted by Struan Gray on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Liam Gumley, Liam.Gumley@ssec.wisc.edu writes:
>

> David Fanning <davidf@dfanning.com> wrote in message
>

>> Liam Gumley (Liam.Gumley@ssec.wisc.edu) gives us an
>> example of a program that can record the last instance
>> of a button push in a non-blocking, non-modal widget

>>

>> No question it works. But | would argue that it works

>> for all the wrong reasons and is a *terrible* programming
>> practice in almost every instance.

>

> Well | guess I'll have to say that my example only

> demonstrates that it *can* be done, not that it

Page 9 of 19 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16013#msg_16013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16022#msg_16022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> necessarily *should* be done.

I've been writing generic helper widgets which behave like the
tool palettes and pattern swatches found in drawing programs. Because
these often manage properties that can be changed elsewhere in the
application, and because they can be left floating about ready for use
at any time, other widgets need to be able to get and set information
about the helper widget's state.

Liam's technique works, but it is ugly (sorry Liam :) and opens an
economy-sized can of worms. My concern is less that users will create
memory leaks, but rather that they will come to depend on a particular
info structure or tag name being present, which makes it hard for me
to revise the helper widget later.

My old solution was for both the main and the helper widget to
send custom events to each other (in the same way that David's colour
table pickers can update draw widgets on 24-bit displays). The helper
widget was defined in a function that returned its own widget ID
instead of a pointer to the info structure.

This works, and is consistent with the overall widget methodology,
but it also causes code-maintainence problems. | find I lose track of
where the custom event structures are defined (sometimes IDL does too)
and they have a habit of proliferating to an alarming extent as the
functionality of the helper widget increases. Also, coding discipline
is demanded to ensure that event handlers of widgets using the helper
in a simplistic way don't lose or trip up on events they are not
interested in.

The new (actually, THE ONE TRUE) way objectifies the widget as
described by Mark Rivers. This simplifies event handling (and
debugging) because the info structure is now referenced by SELF.xXxxXx.

It never needs to be fetched or restored so it can't go missing. The

helper widget creation function returns its object ID and the other

widget(s) can get and set information through methods. Standard

events can be sent to the encapsulated widget by a DO_EVENT method,

and as | mentioned in my earlier post the user now has a way to

prioritise events, bypassing the very crude event management available

in WIDGET_CONTROL. Code becomes more readable since you avoid having
to write (*infoptr).xxxxx everywhere, and | find that procedures and

definitions tend to end up in more logical places on my hard disk.

Why bother? Here's an example: | have a generic viewer widget for
3D model objects. The viewing angle can be set by an embedded
trackball, or by choosing menu items which nudge the object a few
degrees about various axes, or by setting the whole thing spinning
continuously. More exact angular movements, as well as control of the

Page 10 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

spin axes and rate, are specified in a helper widget.

Objectification (reification?) makes it much easier to handle the
multiple ways of setting and displaying the viewing angle and letting
all the interested widgets know that changes have occurred. | can
prioritise user commands like 'stop spinning’ or 'reset angle' and |
don't have to worry about them being lost from the event queue when |
remove piled-up timer events after long redraws. Finally, | can do
gee-whiz things while spinning, such as simultaneously changing
background colours or even editing the structure of the model object
in yet another widget.

Sorry this is a bit long, but I'm enthused.

Struan

Subject: Re: Passing info and destroying widgets...
Posted by steinhh on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

In article <7kn0Oh5%$s0c$1@news.doit.wisc.edu> "Liam Gumley"
<Liam.Gumley@ssec.wisc.edu> writes:

> David Fanning <davidf@dfanning.com> wrote in message

> news:MPG.11d85d6ea2cc37d9897de@news.frii.com...

[...]

>> ... | mean, you can write

>> an object method that returns a data pointer too, but

>> by doing so you violate every tenet of good object programming
>> practice, in which the data should be encapsulated and

>> unseen by the outside world.

[..]

So what good is it, then, if it cannot be seen :-) See below.

[Liam Gumley:]

> My personal programming philosophy is to only use pointers

> where absolutely necessary (e.g. for retaining information when
> a widget dies, or for storing structure elements which are of

> unknown size and type until runtime). I've never used HEAP_GC
> in any of my programs; | rely on simple wrappers like those |

> posted at http://cimss.ssec.wisc.edu/~gumley/pointers.html to

> prevent me from getting into memory leakage problems.

>> As for me, I'm sticking to widget programs that clean
>> themselves up and don't leave the user holding the bag,
>> er, pointer. :-)

Page 11 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16023#msg_16023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> | agree that widget *users* (e.g. of David's fine XCOLORS

> routine) don't want to know (and shouldn't be allowed to touch)
> the internals of "shrink-wrapped" widget routines. But | think

> any IDL application developer will eventually run across cases
> where items like information structures need to be shared

> between widgets which are performing closely related

> application-specific tasks.

| must say | agree a lot more with Liam than David here.

Although users in general should not be bothered with pointers to
object data, there are (at least) 3 different types of users with
different types of needs: users, damned users, and scientists.

Hey, some of them can even write IDL programs :-)

What do you do if your objects contain *large* arrays that need
to be manipulated, analyzed or plotted - in a fashion that's
completely impossible to foresee when you write the object
methods in the first place.

There are basically two ways to do it "David's way", without
slipping a pointer out to the user:

1. "Just write an object method to do it".
2. Use objects like handles

No. 1 is the "right thing", but requiring a user to write an

object method in order to plot his data in a new and exciting way
seems a tad, well, optimistic. We're supposed to *hide* the
internals of the object from the user, not let him loose on the
inside of the object, for heavens sake.

No. 2 is, | suspect, David's favourite way, but it is *either*

memory inefficient *or* includes some awkward handle-like syntax
plus "security risks", just like giving out a pointer to the user

does (in some respects larger, in other respects smaller).

The memory inefficiency is of course related to the fact that if
you're not using pointers, you need to provide a copy of the data
to the outside whenever the outside (user) needs to look at it,
like this:

IDL> data = obj->getdata()
IDL> print,sigma(data)

And let's say you write a widget program to display the data from
two such objects alongside each other - it would have to make a

Page 12 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

copy of each of the data sets every time part of the data needs
to be redisplayed.. And so on.

Or, you could use something like NO_COPY to avoid this but once
again it comes with an extra "security risk":

pro my_tiny_analysis_program,obj
data = obj->getdata(/no_copy)
print,sigma(data)

end

Bye bye data!

Actually, I'd say that providing a *pointer* is a lot less

dangerous, since you're more aware of the fact that you're

messing with something that points to the data itself, it's not

just a normal, dynamic variable.. The example above would also be
totally benign if "data" was returned as a pointer.

The one point where pretending an object is a handle would give
you some benefits, is to protect the user from e.g. changing the
dimensions/type etc of object data without the object detecting

it (just check for it in the "obj->setdata,data” call).

But how do know it's time to remind him you want your data back..

And why should we go back to handle notation? Do you *really*
want to write this simple action with three lines of code:

IDL> data = obj->getdata(/no_copy)

IDL> print,sigma(data)

IDL> obj->setdata,temporary(data)
instead of just:

IDL> print,sigma(*obj->getdata())
So, | hope that not everyone listens too carefully to David's
advice - maybe | could even persuade David to at least mention
these issues in a future book...?

Regards,

Stein Vidar

Subject: Re: Passing info and destroying widgets...

Page 13 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by rmlongfield on Tue, 22 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

In article <7knOh5$s0c$1@news.doit.wisc.edu>,
“"Liam Gumley" <Liam.Gumley@ssec.wisc.edu> wrote:
> David Fanning <davidf@dfanning.com> wrote ...
>> Liam Gumley (Liam.Gumley@ssec.wisc.edu) gives us an
>> example of a program that can record the last instance
>> of a button push in a non-blocking, non-modal widget ...(stuff cut)
but
>> by doing so you violate every tenet of good object programming
>> practice, in which the data should be encapsulated and
>> unseen by the outside world. Sucking the pointer out of
>> a widget program, except perhaps in the hands of just the
>> best programmers, is a practice that is guaranteed, it
>> seems to me, to get most of the rest of us in a hell of

This is really funny. As | was reading Liam's suggestion, | was

thinking that this was a fantastic idea and something that | would
certainly try to implement. Then, | go on to read David Fanning's
comments and am dismayed. Well, you can be sure that | will think think
carefully if | ever decide to use it.

I've recently been forced to deal with too many dangling pointers
because my image tool gave me errors after | was creating (and not
destroying) too many of them. | also now have two delete event handlers
for each top level widget | create. One is called with a quit button
and explicitly deletes all the pointers | have created. The second one
is a cleanup routine (learned from DWF's book) which destroys the
toplevel ID:

PRO Image_panel_cleanup_event,lasteventID
help,lasteventlID,/structure
print,'At the very end of Image cleanup'

WIDGET_CONTROL,lasteventlD,GET_UVALUE=image_infoPtr
PTR_FREE,image_infoPtr
END

This removed the errors related to too many pointers. Using HEAP_GC
just got me into trouble because | didn't really know what | was

deleting or why. | feel happier that my explicit deletion works well

and | know why.

Actually, using Liam's pointer solution might enable me to avoid using
the COMMON statements | just put into my programs to make my data
accessable to other programs. It's a difficult choice....

Rose

Page 14 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2691
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16025#msg_16025
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16025
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Sent via Deja.com http://www.deja.com/
Share what you know. Learn what you don't.

Subject: Re: Passing info and destroying widgets...
Posted by J.D. Smith on Thu, 24 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Struan Gray wrote:

The idea of a objectified widget | owe to Mark Rivers. Deja News
has a thead with a neat discussion of his technique, plus a few
refinements - search on his name and 'objects’. My widgets follow his
scheme, with a few inherited properties that I like all my
program-oriented objects have (such as a unified way of handling
global and user preferences) and generalised information
sharing/passing methods (the above, plus the ability to handle
conventional events).

At present the parts work, but the whole looks like it's in the
middle of open heart surgery. I'm building a disperse set of
data-objects, widget-objects and plot/analysis-objects and at present
I'm playing around with different ways of distributing basic
behaviours among them. I'm not sure when it will be ready for public
consumption, but | promise to make what | have freely available when
itis.

VVVVVVVVVYVYVYVYVYVYVYV

| have developed something along these lines and have been using it for
over a year in all my new widget applications. I'd be interested in

seeing what you have and how it compares. | really think object widgets
(Obgets, for short) are the way to go; so much so, in fact, that I've

toyed with rewriting XManager to be more object friendly. No reason |
shouldn't be able to say:

XManager,"MyApp:"+self.name, self.base, INO_BLOCK, OBJECT=self,
Method="thisEventHandler'

But even this doesn't go far enough. Taking this progression even

further, XManager could be scrapped altogether in favor of an
event-handling, message passing class for obgets. Though my framework,
contained in a class called "ObjMsg", does not directly manage the

widget events of its obget progeny (requiring XMananger still to be

used), it does implement a generic, feature-based message passing

Page 15 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=15972#msg_15972
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15972
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

protocol, which has proven very useful. ObjMsg objects can "publicize"
the features or services they offer, and others can "subscribe" to those
services, all of which can be modified dynamically during runtime. Some
of these features might be just the passing of plain widget events being
generated in a widget an obget contains, but more commonly, they are
messages distilled from one or more widget events, or independent of
widget events altogether. Here's the first paragraph of the doc/blurb:

+

; NAME: ObjMsg

; PURPOSE: A superclass to define a common prescription for event-
; driven object communication. The events will include those

; which arise from widget activity within the objects, but the

; formalism is extensible to any generic 'object events'. Both

; kinds of events are encapsulated by the term 'messages’, and

; are referred to as "object messages” when handled by the

; protocol defined in this class.

Basically, once you have a generic message passing protocol, you are
free to implement whatever message flow structure is convenient, not
just the "up-the-widget-tree" technique implicit in normal widget
programming.

With this freedom comes complexity, but also power. For instance, one

nice feature is the ability to debug your large application by

"snooping"” on the messages being passed. Since they all travel through

the ObjMsg class, you can for instance, do things like "show all

messages of types [msgl,mgs2,msg3] from objects of type X, and show who
is sending them to whom, and the calling sequence which resulted in

their being sent".

| would like to make several improvements, and | think some kind of
obget programming super-class could be very useful, potentially even
part of the IDL distribution. Things I would like to do include:

1. Handle the widget events of the obget progeny -- i.e. obviate
XManager. While XManager is a "private” RSI routine, it really doesn't

do too much at all, just calling widget_info, widget_control, and
widget_event, albeit with a few undocumented keywords. ObjMsg wouldn't
have to provide backward compatibility for "fake" Modal widgets, and
non-blocking widgets aren't really handled by XManager anyway, so this
changeover could be accomplished without too much fuss.

2. Make the service "publication" and "subscription” more robust,
uniform, and easier to understand. Currently each ObjMsg object is
responsible for organizing it's own services for publication, which
leads to different conventions for subscription to different class

Page 16 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

services. ldeally, anyone could write an class which inherits ObjMsg,
name and describe the services it provides, and, without seeing any
source code, someone else could subscribe to and make use of those
services.

3. Update the debugging features mentioned above.
Anyway, it seems like quite a few of you are converging on this type of

idea, and | bet we could come up with something very useable if we put
our heads together.

JD

J.D. Smith *|] WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Subject: Re: Passing info and destroying widgets...
Posted by mallors on Thu, 24 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

In article <376E938D.86AAD3B6@ssec.wisc.edu>,

Liam Gumley <Liam.Gumley@ssec.wisc.edu> writes:

> "Robert S. Mallozzi" wrote:

>> | believe you must use XMANAGER in blocking mode for

>> this technique to work.

>

> [|'ve used this technique successfully in blocking and non-blocking

> modes. As long as the main widget procedure creates a new pointer for
> each invocation, there is no problem.

>

Uhh, I stand corrected. Heck I've even used this somewhere
before...Lesson for the day: if you've spent the last 2 months
with C++, *try* the IDL code before you hit the "Send" button :-)

Robert S. Mallozzi 256-544-0887

Mail Code SD 50
Work: http://gammaray.msfc.nasa.gov/ Marshall Space Flight Center
Play: http://cspar.uah.edu/~mallozzir/ Huntsville, AL 35812

Page 17 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2365
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=15979#msg_15979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Passing info and destroying widgets...
Posted by philaldis on Mon, 28 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

On 21 Jun 1999 16:25:04 GMT, Struan Gray <struan.gray@sljus.lu.se>
wrote:

> Interesting discussion snipped

Well while we're all talking about the various styles of widget
programming that we use, | thought | may as well throw my hat into the
ring.

At the moment I'm writing a direct graphics version of IDL's insight.
Those of you who've seen insight will know that there's a data manager
and a visualisation manager. The data manager has to hold all the data
objects and the visualisation mamnager has to hold all the

visualisation objects. It is essential that these two, and the main
program can all communicate.

The only solution is that all the widgets are objects. They are all,

though, very separate entities, and so | make them kind of
compound/object widgets. i.e. | call

datMan = dataManager(PARENT=mainWID)

dataManager then creates its own tlb, and then creates an object of

the class dataManager. Both the visualisation manager and data manager
are subclassed from DERA_Container, which is essentially just like
IDL_Container. They contain all the objects.

The UVALUE of one the menu buttons is set to the object so it can be

got at. | then use the FUNC_GET_VALUE to create a function which when
called returns the object reference. This means that the other object

can then invoke relevenat methods and so on. When an event is

received, the object reference is got, and then an object event

handler is called with teh event passed in. This event handler calls

all the relevant method.

| find this method is by far the best way to create complex widget
programs where lots of different elements interact. The fact that
other objects can call other objects methods is so powerful. For
example, in my main program | have a button which says
'Import file...'

When button is clicked, it simply does:-

Widget_Control, self.datMan, dataObj
dataObj->inportFile

This is the sort of integrated power that can be achieved.

Page 18 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2941
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=15928#msg_15928
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15928
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,
Phil

Subject: Re: Passing info and destroying widgets...
Posted by Struan Gray on Mon, 28 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

J.D. Smith, jdsmith@astrosun.tn.cornell.edu writes:

> Anyway, it seems like quite a few of you are converging
> on this type of idea, and | bet we could come up with
> something very useable if we put our heads together.

I'm game. A semi-standardised set of objects and methods for
handling basic functionality will make it much easier for us to share
'real' code later. Usenet has a fine tradition of awarding victory to
the least lazy, so | suggest that those of us with working models and
ideas should stick them on websites for others to peruse and comment
on, and we'll see if we can interate to a solution.

Sadly, despite my recent rash of posts | am genuinely too busy

until the end of July to do more than snipe from the sidelines. |
promise to expose my own code to a cruel world Real Soon Now.

Struan

Page 19 of 19 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9818&goto=16109#msg_16109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=16109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

