Subject: Re: When should objects be used?
Posted by davidf on Thu, 24 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Uh, well, gosh. If people are going to be serious about this...
| have two main criteria | use for creating an object:

1. I'm writing a compound widget. | write these as objects
because they are so much easier to control. Getting the
value of a compound widget means getting its object reference.
Then | can do anything to the compound widget | like by calling
a simple object method. When | remember | wanted to do something
else to the compound widget, | just write a 3-4 line new method
and it's done. No fooling around.

2. | want a "thing" to have some intelligence. For example, |
want a plot that knows how to position itself in a window
and what linestyle and symbol | want to use. | want a smart
image that knows and can remember what kind of processing
| have applied to it. | want a contour plot that knows how
to position itself on a map projection or not and whether |
want a colorbar with it or not. That kind of thing.

Most of the objects | write are of the second type. The

real advantage to me of these "smart" objects is that they

can be easily controlled by widget programs. For example,

the user can choose the plot background and foreground colors
from a palette of drawing colors, just by clicking on a

pull-down menu item. | don't have to hardcode a couple of
colors into my program and listen to how my user doesn't like
my aesthetic sensibilities. "Do it yourself”, | say.

| do the same thing with smart images. Sure, | have an *idea*

how this image should be processed. But what if my user wants

to smooth the image *before* the edge enhancement step, when |
was certain they would do it *after*. What if they want to smooth
twice before this step? My program can accommodate any ol' thing
the user is stupid enough to want to try, even though | know

better. A smart image can be processed any way at all, and if

you don't like what you just did, you can even undo it, because

an UNDO method is part of what a smart image is.

The very first object | wrote was a smart window that was
simply told what kind of grid it should use to lay things
out (l.e., 2 column by 3 row). Given a "plot object" it
could lay those things out in its grid. The "plot" could be
any old thing at all. The window didn't know or care. This

Page 1 of 17 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15961#msg_15961
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15961
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

made it possible for me to write Copy, Cut, and Delete methods for
things that were in the window. | had never thought of doing
anything like this before. Now the user could set up the

window the way *he* wanted it set up. Not the way | imagined

he wanted it set up. He could even drag something from this
position and put it over there.

| guess this is the thing about objects that has most amazed
me. Building objects tends to *generate* more ideas about what
to do with them than | ever got when | was writing programs

in the old linear way. All of a sudden whole new ways of
working and interacting with data is possible. The problem is
often not "what would | use an object for", but "how can | stop
having ideas so | can stop writing this damn program and get
some work done". They have been liberating for me, but then
I'm not the world's most innovative programmer, although

I've always been a pretty good mimic.

| like objects because they make me feel brighter than |

really am. (And tossing the jargon around really intimidates
people who ask you a question about IDL you don't know how
to answer. :-)

| know because about half the time when | read these object
posts in this newsgroup | think to myself, "Fanning, *you*
are writing a book about objects!? Who do you think you're
kidding!"

Cheers,
David

P.S. Let's just say objects are a whole lot cheaper than cocaine. ;-)

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: When should objects be used?
Posted by John Persing on Thu, 24 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

| have used objects for over a year and spurred some of the recent
discussion. | have used two objects, in four different contexts. But

Page 2 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3085
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15963#msg_15963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

before | start with that, let me make two observations on your programming:
1) it works, 2) and you use reusable programming units. Those are the two
more important features of any scientific programming effort.

Use widgets if you want to interact with the data in a random manner to
explore different ideas. In this context, your widgets would only

"front-end" the codes that you have already written. | agree that you don't
want to produce your publication figures with a widget. There are other
options, like storing all your variables created by the widget in a

structure that can be saved or come up with a mechanism that can store your
button clicks, but those are probably not as robust as handwriting a
procedure does that things that you would have done on the widget.

The first time | used objects was to create an "editor" in a text widget,

but the "editor” was to be a restrictive program development environment.
The skinny is that the user would have a lot of liberty to edit the lines of

the "editor" in some ways, but with very great restrictions in others. What

| wanted to do was put strict curtain around the data edited by the

"editor", which is one advantage of objects. Because all changes in the
object must be routed through a limited number of methods, you can control
strictly how the object is changed. But if you are not coding for a "dumb
user" (a programmer should be arrogant enough to claim it is all the other
people who are "dumb") then this shouldn't motivate you.

The second object | made was a little more ambitious. | made an object to
store any kind of data and | have used this object with three datasets with
entirely different structures. The first two datasets were just to test the
concept, while | really had the third problem in mind. The first dataset
was to read a text file containing the radii and masses of each of the
planets and of each of the satellites around each planets, so basically a
structure array with an additional mechanism for attributing a satellite to

a parent planet. | discovered that the routines | want to attach to the
object are those that are well-used and are intimately related to the data
itself, such as the utility that attributes satellites to parents. The

second dataset was to store the x and y positions of N point vortices over T
time steps, so basically it was a multidimensional array. An object is
certainly not the best way to deal with this problem either, but it was

useful for testing concepts. A side benefit though was that | was able to
create a single, master widget interface that could interface with all three
datasets by reusing this object. (How I did that would be a topic of
another long post.)

But the third problem is where the object is ideally suited. |ingest a
bunch of large 4-D arrays (yet small enough for all to stick in memory) of
temps, winds, moisture, etc. that is output from an atmospheric forecast
model. Then from these fields, | can compute derived fields, such as
vorticity, horizontal gradients, etc. But | don't always. What | wanted to
do was to create variable structure that would make it easy for me to write

Page 3 of 17 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

code with. | want to be able to perform gradients or averages on any field,
or even any list of fields. | want to do so at will. So | stuff all the

fields into an object called "dat". Any new field get added to dat. All

the fields are referred to by a string name. The data is stored as a simple
structure array, where the first element is the "name" as a string and the
second element is the "dat" as a pointer, which can point to anything. The
primary methods to the object are "query"”, "assign”, and "delete".

dat->query("u") asks for the u-winds.

dat->assign, "speed”, SQRT((dat->query("u"))"2.0 + (dat->query("v"))"2.0)
creates a new variable with the wind speeds

dat->delete, "speed" gets rid of the new field.

Also, there is a mechanism for querying for a slice of a data field. Other
methods check to see if a variable exists and to print out a summary list of
the names of the fields stored. As you may see, this allows for a
free-flowing mechanism for interacting with the data, liberally creating
derived data at whim. Most of the mathematics are performed in separate
procedures. One example is a code to produce radial profiles (of the
cylindrical dataset) of an arbitrary list of data

compute_radial_means, dat, ['vort', 'U’, 'V']

where the output will be stored in dat as the new fields "rad_prof_vort",
"rad_prof _u", and "rad_prof v". Because the datafields are referred to by
string name and all the data fields are stuffed in dat, this free-flowing
approach works. Keywords allow the additional retrieval of asymmetric
portions and settings for dealing with masked data points. And again, | can
use the same tested widget metaphor used above. This allows me to do
one-liners at the IDL prompt with ease and write code quickly.

| have seen the short-comings of this approach, though. If a field isn't in

the object, | either have to do alot of robustness coding, or just rely on

the errors generated. | generally do the later because, of course, | am not

a "dumm user”. Also, | wish | would have thought of a mechanism for storing
metadata for each field, specifically how to map each of the dimensions of
each field to independent variables. | will definetly come up with an

additional mechanism for handling bad datapoint masks, which are now not so
satisfactorily done by setting a large negative number.

Some advice: Only use an object to solve a specific shortcoming of your
present approach or better yet that you anticipate from your future
programming effort. Also, implement objects from the start of the
programming project. The choice of data structure should always be your
first decision. Then you start coding.

}3 John Persing }3

Page 4 of 17 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

http://www.frii.com/~persing persing@frii.com

Subject: Re: When should objects be used?
Posted by davidf on Thu, 24 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Richard G. French (rfrench@wellesley.edu) writes:

> My problem is that so much of the discussion of objects
> seems abstract that | have a hard time figuring out how to
> translate it to the problems | am trying to solve.

To tell you the truth, | read JD's articles five or six
times and I'm *still* not sure | have a clue. :-(

Cheers,
David

P.S. Let's just say that object programming is a whole
lot easier than a lot of people might lead you to believe. :-)

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: When should objects be used?
Posted by mallors on Fri, 25 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

In article <3772CE57.6BF093C8@wellesley.edu>,

"Richard G. French" <rfrench@wellesley.edu> writes:

> Nearly all of my IDL programs started as interactive bits of code, saved
in

a journal file and then expanded into programs. The main power of IDL
for me is to be able to tinker with the code quite easily, try different
things out, and then finalize the code in the fashion that works best.

Most of these programs are the old-fashioned kind where you specify the
conditions at the start (the data to be

analyzed, the conditions of the analysis, the form of the result) and

VVVVYVYVYV

Page 5 of 17 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15964#msg_15964
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15964
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2365
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15953#msg_15953
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15953
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

[text omitted]
Hi,

| think the experts here in this group have probably given

you enough info to peak your interest, but | just want to point
out that one of the most useful features of object oriented
programming is "code reuse". Unfortunately, for the type of
exploratory science analysis you describe, it is sometimes
difficult to decide what procedures would (or could) be suitable
to be made into objects. | have found that for a lot of data
analysis code that no one but yourself will be using, a full
blown object-oriented design is not usually acceptable.

On the other hand, keep in mind that if you can write some

useful utility objects, you can use them easily within your

"old" procedural method of programming. For example, | was
finding myself always manipulating my data file names, extracting
the path, the file extension, etc. This type of task is perfect

for encapsulation into an object, so | created a simple "File"
object. This object can then be used anywhere in IDL - you don't
have to have an super-duper full object oriented program.
Perhaps the task you mention of writing TeX tables might be a
good place to start:

Table = OBJ_NEW ('teXTable) ; Make an instance of a 'teXTable' obj
Table->setColumns (5) ; This table will have 5 cols.
Table->setData (myData) ; myData might be an array of structures
; with 5 tags. You could even omit the
; setColumns() method, and just figure
; out the number of columns
Table->write (‘'myTable.tex’) ; Write a table
OBJ_DESTROQY (Table) ; Clean up memory

This object could then produce TeX tables for any of your datasets,.
Come to think of it, | would like to have this object...why don't

you post it when it's done ;-)

Regards,

-bob

By the way, you can take a look at the File object on my
web page: http://cspar.uah.edu/~mallozzir/software/idl/idl.html

Page 6 of 17 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Robert S. Mallozzi 256-544-0887

Mail Code SD 50
Work: http://gammaray.msfc.nasa.gov/ Marshall Space Flight Center
Play: http://cspar.uah.edu/~mallozzir/ Huntsville, AL 35812

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~—~

Subject: Re: When should objects be used?
Posted by Richard G. French on Fri, 25 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

This posting from Pavel makes me realize that | probably
didn't emphasize enough that the kinds of plot, contour,
and image objects | was talking about in my previous article
are definitely, emphatically NOT object graphics!

I'm was talking about direct graphics objects that have all
the advantages of object graphics objects, but are fast to
display and will give you wonderful hardcopy output without
waiting beside the printer for half the afternoon. :-)

VVVVVVVYVYVVYV

OK, you need to help me out here - what is the difference between
direct graphics objects and object graphics objects? Could

you describe a simple example for those of us without brains that
can process abstractions?

Subject: Re: When should objects be used?
Posted by davidf on Fri, 25 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Pavel Romashkin (promashkin@cmdl.noaa.gov) writes:

| am adding my humble opinion to the words of experts above - to say that | have
not had a need yet to write my own objects (and, therefore, don't know how to do
that :-). The only objects | use are graphics objects. The reason | preferred to
use object graphics was not the ease of positioning, etc. but the need to re-use
the data plotted. Direct graphics is way faster than RSI supplied object graphics
to plot or print. However, | came finally to the point where | plotted the data

that were a result of quite complex pre-processing, and that data were to be

>
>
>
>
>
>
>
> further modified, but visual inspection was needed. It was in a widget

Page 7 of 17 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2158
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15956#msg_15956
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15956
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15958#msg_15958
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15958
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> application, many intermediate variations were possible. And the data in direct
> graphics is lost, once you plotted it, unless you specifically store it somewhere.

This posting from Pavel makes me realize that | probably
didn't emphasize enough that the kinds of plot, contour,
and image objects | was talking about in my previous article
are definitely, emphatically NOT object graphics!

I'm was talking about direct graphics objects that have all
the advantages of object graphics objects, but are fast to
display and will give you wonderful hardcopy output without
waiting beside the printer for half the afternoon. :-)

Cheers,
David

P.S. | can't imagine anyone EVER using the object graphics
contour object in a real program. At least not in its present
condition. :-(

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: When should objects be used?
Posted by Pavel Romashkin on Fri, 25 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Writing your own objects is another realm | think. Objects provided by RSI are
useful too.

| am adding my humble opinion to the words of experts above - to say that | have
not had a need yet to write my own objects (and, therefore, don't know how to do
that :-). The only objects | use are graphics objects. The reason | preferred to
use object graphics was not the ease of positioning, etc. but the need to re-use
the data plotted. Direct graphics is way faster than RSI supplied object graphics
to plot or print. However, | came finally to the point where | plotted the data

that were a result of quite complex pre-processing, and that data were to be
further modified, but visual inspection was needed. It was in a widget
application, many intermediate variations were possible. And the data in direct
graphics is lost, once you plotted it, unless you specifically store it somewhere.
Storing copies of slices from a 3 mb array is possible but | didn't like it. This

is when | went to objects. In my primitive application, | use different view

objects to display different modes of operation, and can extract the data from

Page 8 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15959#msg_15959
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15959
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

objects tfor analyses - not to just change the appearance of the plots easily.

This way complicated dataset may be used interactively again and again, without
storing it separately.

| can't pretend to advise people on how to use objects. This is how object
graphics work for me.

Good luck,

Pavel

Subject: Re: When should objects be used?
Posted by davidf on Sat, 26 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Richard G. French (rfrench@wellesley.edu) wrote in
an e-mail to me:

| think | have your current version of colorbar__define but
there is no INDEX keyword allowed in it. | get the
following error message:

% Keyword INDEX not allowed in call to: COLORBAR::INIT

V VVVYVYVYV

What is my mistake here?

Sorry. My fault. | accidentally had two versions of the
program in my directory and | grabbed the wrong one when |
tested the code. I think all is straight now and a combined
version is located here:

http://www.dfanning.com/programs/colorbar__define.pro
Sorry for the confusion.
Cheers,
David
David Fanning, Ph.D.
Fanning Software Consulting
Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: When should objects be used?
Posted by Richard G. French on Sat, 26 Jun 1999 07:00:00 GMT

Page 9 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15940#msg_15940
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15940
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2158
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

David Fanning wrote:

>

> Richard G. French (rfrench@wellesley.edu) writes:

>

>> OK, you need to help me out here - what is the difference between
>> direct graphics objects and object graphics objects?

>

<snip snip snip>

David - | had a vague idea of the difference, but you made it crystal
clear.

Add me to the list of people who will buy your book next month when
you've

finished it!

Dick

Subject: Re: When should objects be used?
Posted by davidf on Sat, 26 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

Richard G. French (rfrench@wellesley.edu) writes:

> OK, you need to help me out here - what is the difference between
> direct graphics objects and object graphics objects?

There are two graphics systems that you can use in IDL.
One, the direct graphics system, is what you are using now
and has been a part of IDL from the beginning. The other,
the object graphics system, was introduced in IDL 5.

The two systems are completely separate and different. You
cannot mix and match. You use one or the other. In fact, the
way they are implemented is that you create either a

direct graphics window (l.e., Window) or an object graphics
window (l.e., window = Obj_New('IDLgrWindow")). You cannot
display direct graphics in an object graphics window and

visa versa.

When RSI introduced the object graphics system, they also
introduced an object class library of low-level objects

that could be used to produce object graphics. In general,
this library is much harder to use than direct graphics,
although you have a great deal more power and control
over how things are displayed than you ever did in direct
graphics. (There are also things you *can't* do in object

Page 10 of 17 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15943#msg_15943
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15943
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15945#msg_15945
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15945
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

graphics that can easily be done in direct graphics. For
example, you can't currently label a contour line with
its value in object graphics.)

One of the things that is holding object graphics back,

in my opinion, is not that they are so hard to use (it

takes about a page and a half of code to reproduce the
direct graphics PLOT command, e.g., see XPLOT), but that
they take so darn long to print. The object graphics

system is a true 3D system. And *everything* is done in
3D, even 2D line plots. So every time you do something
with an object graphic, you have to carry around a LOT

of information. That is what makes simple PostScript files
of a PLOT command appear in the 10-20 MByte range. (RSI
is making efforts to reduce the size of these files.)

As a result, object graphics can be slow and printing

can be extremely frustrating unless you have a coffee
machine nearby.

Now, it turns out that an awful lot of what we do is NOT
done in a 3D space, but in a 2D space. Line plots, contour
plots, image displays, etc. Using a 3D graphics system for
these 2D requirements is overkill. It not only slows

these things down, but it makes them hard to print, etc.

But on the other hard, objects are really NICE! Each
object's properties are "sticky" if you like. If |

create a plot object, for example, and tell it | want

it to draw its data in a green line with red symbols,

it is going to draw its data like that forever. | don't

have to set a COLOR keyword every time | want it done
that way. | just tell the object to draw itself and it

knows what it should do. And, of course, each object

of that type that | create has its own sticky parameters.
So | can create these plot objects and each can plot

its data in different colors, linestyles, etc. And each

can remember its own state. (Sound like a widget to you?)

Well, one of the side benefits of RSI introducing the

object class library, for their new object graphics system,

was that they had to create and introduce a way to create

this new object data type. So, alright, the object graphics
system is a nightmare to learn and we don't need 3D graphics
anyway. Everything we do is in 2D space. What can we gain
from objects?

Well...everything!

Page 11 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

We can just write our own objects to do whatever we want them
to do. | happen to like plots that can remember than | want

a charcoal background and yellow axes and green data lines with
red symbols that can *always* go into the same location in a
display window, whether that window is on my display or in my
PostScript file, or in the Z-buffer or whatever it is. So |

can build one.

And you can use it because | am going to publish the "methods"
which are the procedures and functions that you can use to

interact with my plot object. For example, | might tell you

that to change the axes color you use the method ChangeAxisColor
like this:

myPlotObject->ChangeAxisColor, 'beige’

Now anytime you draw that plot in a display window:
myPlotObject->Draw

it is going to be using a beige color for the axes.

But here is the thing. You don't know *how* | am actually
drawing the plot, or even setting the color of the axes.

Nor do you care much, as long as it works. *How* it is done
is left up to me and | can be as creative (or not) as |

want to be.

> Can you describe a simple example for those of us without
> brains that can process abstractions?

Well, I've already done it. I've even gone to the trouble
of documenting it *extremely* heavily. But no one seems to
be looking at it. :-)

You can find the direct graphic colorbar object on my web
page:

http://www.dfanning.com/programs/colorbar__define.pro

A colorbar is a 2D sort of thing. | often use colorbars with
filled contour plots. | already mentioned that | can't imagine
anyone using the object graphics contour plot, because you
can't label contour lines. So | built this direct graphics
colorbar object to go with my direct graphics contour plot
object. (Although I give a LOT of stuff away, | don't give
everything away. You will have to pay me for the contour
plot object, it's that nice. :-)

Page 12 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

To see how this works, let's open a window and
display an image. You will have to get my TVImage
and LoadData programs to run the code below, or
you can use your own image:

http://www.dfanning.com/programs/tvimage.pro
http://www.dfanning.com/programs/loaddata.pro

Here we go:

image = LoadData(7)

Window, XSize=500, YSize=500

TVImage, image, Position=[0.25, 0.1, 0.75, 0.75]
You create the colorbar object like this:

cbar = Obj_New("COLORBAR", Index=5)
Here | create a colorbar with color table 5. I've left
other parameters (Position, Range, Color, Title,
Fontsize, etc., etc.) to be set to their default values.
By default, this is a horizontal colorbar positioned
in the upper part of a window, so to see it | can do this:

char->Draw

Suppose that is not really where | wanted it. Suppose |
really wanted a vertical colorbar. Then | could do this:

; Erase the current colorbar.

cbar->Erase

; Make it vertical.

cbar->SetProperty, Vertical=1

; Redisplay it in the window.

cbar->Draw
Whoops! | wanted it on the left side of the window, not the
right and resized for the image. As it happens, | wrote the
SetProperty method so that | can automatically erase and
redraw the colorbar object when | make a change to it. So,

to move the colorbar for the right side of the window to
the left and make it the right size, | do this:

Page 13 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

cbar->SetProperty, Position=[0.15, 0.1, 0.22, 0.75], /Draw, /Erase

Ever see a direct graphics program do that!? Without moving
the image?

No, me either. But that is what is possible with objects. :-)
The code is all there. If you want more details, | can put
you on the list to be the first one (actually about 15th now)
to buy my new book. :-)

Cheers,

David

P.S. Whoops! Objects are persistent, so we have to get rid
of them when we are finished. If we don't, we will have
memory leaking everywhere. :-)

Obj_Destroy, char

P.S.S. Works in PostScript *just* like it works here!

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: When should objects be used?
Posted by mallors on Sat, 26 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

| wrote in bad syntax
> Perhaps the task you mention of writing TeX tables might be a
> good place to start:
>
Table = OBJ_NEW ('teXTable') ; Make an instance of a 'teXTable' obj
Table->setColumns (5) ; This table will have 5 cols.
Table->setData (myData) ; myData might be an array of structures
; with 5 tags. You could even omit the
; setColumns() method, and just figure
; out the number of columns
Table->write ('myTable.tex’) ; Write a table
OBJ_DESTROQY (Table) ; Clean up memory

VVVVYVYVYVYV

Page 14 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2365
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15946#msg_15946
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15946
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
when of course | should have written

Table = OBJ_NEW (‘teXTable")
Table->setColumns, 5
Table->setData, myData
Table->write, 'myTable.tex’'
OBJ_DESTROQY, Table

Robert S. Mallozzi 256-544-0887

Mail Code SD 50
Work: http://gammaray.msfc.nasa.gov/ Marshall Space Flight Center
Play: http://cspar.uah.edu/~mallozzir/ Huntsville, AL 35812

Subject: Re: When should objects be used?
Posted by Nick Bower on Sun, 27 Jun 1999 07:00:00 GMT

View Forum Message <> Reply to Message

>> OK, you need to help me out here - what is the difference between
>> direct graphics objects and object graphics objects?

i'd encourage anyone to read about OOP before looking at this area with
IDL. While no expert, what experience i do have in this area before
beginning with IDL a year ago made me realize from the start there more
advantages to OOP than is implemented in RSI's attempt to incorporate
this "facility”. Unfortunately, imho, | think this is where it goes

wrong - Objects aren't an add-on but should either be the basis of a
language or not. | just really don't think learning how to program with
objects in IDL as a first exposure is a good thing. go read some on
object design. :) it'll take less than a few nights of reading to

understand the basics and things will begin to make sense. but also
some things in idl will just not make sense ;)

> graphics. (There are also things you *can't* do in object

> graphics that can easily be done in direct graphics. For

> example, you can't currently label a contour line with

> its value in object graphics.)

The first wall | came up against is that | couldn't incorporate a draw
widget into a GUI canvas of buttons, menus, etc. It seemed that you had
to have a specialized window dedicated for plots. Anyone manage to do

Page 15 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3108
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=9835&goto=15932#msg_15932
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=15932
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

this in object graphics? I'd be interested to know, although | did end
up using direct graphics for maximum speed.

Being familiar with several visual object languages, it wasn't

immediately obvious to me how a widget object packer worked either.
view->scene->window, fine, but i couldn't work out how to arrange

buttons, labels, draw widgets etc into this and there weren't any useful
examples in the documentation that's for sure. maybe it's just my only
dedicating 2 days to this area - but why is there a IDLgrPlot object,

but no textbox, slider or button objects? | could never work this out

and saw this area as somewhat of a sad joke given my previous experience
in Python, c++ and ArcView.

One of the things that is holding object graphics back,

in my opinion, is not that they are so hard to use (it

takes about a page and a half of code to reproduce the
direct graphics PLOT command, e.g., see XPLOT), but that

V V.V V

personally i don't think they need_ to be this difficult. they've just

been made that way because it's not object designed from the ground-up.
:(there are better ways to learn about objects. Python is the best

I've seen - alot friendlier than Java for starting out.

> But on the other hard, objects are really NICE! Each
> object's properties are "sticky" if you like. If |
> create a plot object, for example, and tell it | want

i think if we begin using accepted terminology such as classes,
instances, attributes, methods, etc it'll make it easier on the people
trying to pick the stuff up from external-IDL sources. just my opinion
though.

> it to draw its data in a green line with red symbols,

> it is going to draw its data like that forever. | don't

> have to set a COLOR keyword every time | want it done
> that way. | just tell the object to draw itself and it

> knows what it should do.

i think an important thing here is that we can move away from that darn
concept of attaching structures to the user defined value of widgets.
That's just a work around the problem that gui programming is most
suited to an object approach | feel. when you have some decent objects
to start with that is...

> We can just write our own objects to do whatever we want them
> to do.

but i would cautiously point out that we are limited by the foundation

Page 16 of 17 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

classes and subsequent class heirachy RSI have provided us with. so my
advice isn't to sway anyone here into using objects or not, more to take

in wider view of the field, then make up your own mind on RSI's OOP
attempt.

cheers, nick

Nick Bower

Space Science and Engineering Center
University of Wisconsin, Madison, USA
Phone: (608) 265 8007

Email: nick.bower@ssec.wisc.edu
Web: http://arm1.ssec.wisc.edu/~nickb

Page 17 of 17 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

